Abstract:
A cable bead comprising an annular core and a side wire spirally wrapped up around the annular core, wherein the annular core is made up of a round steel wire made to circle once or made, without being stranded, to circle 2 to 10 times side by side, and wherein the side wire is a round steel wire consecutive from the annular core. This provides a high-strength cable bead that can press a tire main body against a wheel without fail even if a tire is charged with a high load.
Abstract:
A steel strand (10) comprises a steel core wire (12). This steel core wire (12) is surrounded by steel layer wires (14) that are twisted around the steel core wire (12). The steel core wire (12) is covered with a thick corrosion resistant core coating (16) provided by strip cladding or by metal extrusion. The steel layer wires (14) are covered with a thin corrosion resistant layer coating (18) provided by a hot dip operation or by an electroplating or chemical plating process. The steel strand (10) is compacted so that said steel layer wires (14) have a non-circular cross-section and that the thick corrosion resistant core coating fills the interstices between the steel core wire (12) and the steel layer wires (14) in order to give the steel strand (10) an improved corrosion resistance and increased lifetime.
Abstract:
Provided is a rubber article-reinforcing steel cord having improved shear fatigue resistance while reducing the weight of the steel cord by using a wire of high tensile strength. The rubber article-reinforcing steel cord 10 is a steel cord 10 having a two-layer twisted structure comprising a core filament 11 composed of a plurality of filaments and a sheath filament 12 composed of a plurality of filaments twisted around the core filament 11, wherein the tensile strength of the core filament 11 is higher than the tensile strength of the sheath filament 12, and the core filament 11 and the sheath filament 12 are twisted together in the same direction and the same pitch.
Abstract:
A wire rope for elevator systems used to hoist, compensate, and govern an elevator car. The wire rope may include six to ten outer steel strands surrounding a central braided polyester core. The wire rope may include six to ten outer steel strands and six to ten inner steel strands surrounding a central braided polyester core. The braided polyester core may include 8-24 single- or double-braided outer strands surrounding a polyester core center that may include parallel fibers, twisted fibers, twisted strands, single-braided strands, or double-braided strands.
Abstract:
A wire strand (10) comprises a plurality of wires (12, 16, 20). The wires comprise a central king wire (12), a first layer (14) of wires (16) arranged around the king wire, and a second layer (18) of wires (20) arranged around the first layer. The king wire is formed of steel having a carbon content of at least 0.3 wt %. Each wire of the first layer is formed of steel having a carbon content which is less than the carbon content of the king wire. Each wire of the second layer is formed of steel having a carbon content which is greater than, or the same as, the carbon content of the wires of the first layer.
Abstract:
From a first aspect, a method is provided for forming a helix rope for a trawl comprising the steps of: a) situating upon a portion of a rope a bead of a substance being selected from a group consisting of: (i) a liquid substance; and (ii) a semi-liquid substance. From a second aspect, a helix rope (35) is provided for forming portions of a pelagic trawl, the helix rope comprising a braided sheath (398) formed of greater than sixteen strands (397), whereby drag is reduced. From a third aspect, a method is provided for forming a high strength synthetic rope useful for towing warps, trawler warps, yachting ropes, mooring lines, anchoring lines, oil derrick anchoring lines, seismic lines, paravane lines, and any other uses for rope, cable or chain.
Abstract:
A combined cable comprising a core cable of high-strength synthetic fibers, which take the form of a twisted bundle of monofilaments or a plurality of twisted bundles of monofilaments, and comprising an outer layer of steel wire strands, is characterized in that the bundle or bundles of monofilaments is or are stretched, with a reduction in diameter, and held in this state by a sheathing, in particular a braided sheathing. The extension under strain of the core cable under load is thereby reduced, so that the load distribution between the cross section of steel and the cross section of synthetic material of the cable improves.
Abstract:
A cable for use in a safety barrier is provided. A cable for use in a safety barrier may include a plastic core wire and a plurality of metal wires disposed adjacent to and longitudinally to the plastic core wire. The cable may be pre-stretched prior to installation in the safety barrier. A method of making cable for use in a safety barrier may include (a)providing a plastic core wire, (b) disposing a plurality of metal wires, each metal wire disposed adjacent to and longitudinally to the plastic core wire, and (c) prestretching the cable prior to installation in the safety barrier.
Abstract:
A highly flexible radiopaque cable includes two, and preferably three or more strands of nickel-titanium (NiTi) alloy wire which are twined about a higher density core wire preferably made of at least one of silver, gold or platinum-iridium to form a wire rope. The wire rope is drawn through successive dies to reduce its diameter until the outer surface of the cable is substantially smooth, the cross section of the cable is substantially circular, and the overall diameter of the wire rope is reduced by 20-50%. The cable is then annealed to remove the effects of cold working. The resulting cable has been found to have a substantially equal or improved flexibility (i.e., a lower modulus of elasticity) relative to single strand nickel-titanium wires of the same diameter and a higher radiopacity. In an alternative embodiment, no core wire is utilized, and the higher density wire is drawn with two or more strands of NiTi wire. In another embodiment, the higher density wire is radioactive.