Abstract:
An immersion sensor for analysis of liquids or melts includes an immersion carrier, a detector and a radiation-guiding unit, and a sample chamber arranged in the immersion carrier. The sample chamber has an inlet opening for liquid or melt, and the sensing components for measurement of the liquid or melt act inside the sample chamber.
Abstract:
A system for enabling the measurement of a temperature in a furnace (30, 48) using a pyrometer (38) that includes a pallet support (32, 52) for supporting a pallet (40, 50) a given distance (c) above a furnace floor (31) and a pyrometer target (10, 60, 80) that includes a support member (12, 62, 82) and a target member (14, 68) separable from said support member (12, 62, 82) where the support member (12, 62, 82) has a height less than the given distance (c).
Abstract:
A light trap suitable for use in an optical imaging system includes a hollow sphere, with a hollow cylindrical tube attached substantially tangent to the surface of the sphere, and forming a chimney. The interior and exterior surfaces of the sphere are coated with a low-reflective coating, such as flat black paint. A sample to be imaged is placed over the opening of the chimney with an imaging system and illumination source directed downward into the chimney itself. Light which passes through or around the sample is captured in the sphere, so that it is not reflected back into the imaging system.
Abstract:
The present invention includes a process and apparatus for determining the temperature of a sample such as urine without contacting the sample itself. A portable device is used to carry the temperature measuring apparatus. The sample of urine is placed in a plastic container on an adjustable support and the temperature is measured by an infrared pyrometer.
Abstract:
Apparatus (2) includes a platform (14) on which is supported, via spaced apart posts (16), a stationary rigid support disc (17). Between the platform (14) and disc (17), plaque holder (18) is rotatably mounted. The plaque holder is arranged to hold a plaque (19) for assessment. The plaque is made by injection moulding from a composition comprising a polymeric material and a specific amount of reheat additive(s) and any other additives(s) to be assessed. The plaque holder is arranged to move the plaque relative to the disc (17). In an input position, the plaque holder (18) is arranged directly underneath opening (20). In a measurement position, which is 90° from the input position, there are provided first and second temperature measuring assemblies (24, 26) arranged to measure the temperature of the top and bottom surfaces of a plaque held in the plaque holder. The plaque holder can be rotated through 90° from the measurement position to a heating position, wherein the plaque is positioned directly below a heat lamp. In use, the plaque holder is rotated to the heating position, wherein the plaque is heated by the lamp for a predetermined time. Then the plaque holder is rapidly rotated back to the measurement position, wherein the temperatures of the upper and lower surfaces of the plaque are rapidly measured. These steps are repeated and data recorded to allow reheat and/or other characteristics of the plaque to be assessed over time.
Abstract:
A sensor arrangement for melted materials includes an upper part and a detachable lower part. A tube extends coaxial to a longitudinal axis of the lower part, is closed on its end facing away from the upper part, and is open on the other end. The tube is arranged on an immersion end of the lower part facing away from the upper part. A guide tube, extending coaxial to a longitudinal axis of the upper part and being open on both ends, is arranged in a guide sleeve. A pressure acting in the direction of the lower part is applied to the guide tube by an elastic body and the guide tube touches against the lower part. One opening of the guide tube and the open end of the tube of the lower part are arranged adjacent to each other and coaxial to the longitudinal axis of the lower part.
Abstract:
The invention relates to a heat-testing rig for a pantograph wearing strip (10), comprising a housing (11) for receiving said wearing strip to be tested; current supply and return means (13, 14), characterised in that it comprises at least one tool (15, 16, 17, 18, 19) carrying at least one segment (20, 21) of a catenary contact wire which can be supplied with current by said supply means and can be brought into mechanical contact with an upper surface of said wearing strip (10) to be tested, so as to form a point, known as the hot point, where current passes between this wire segment and said wearing strip, and means for measuring the temperature of said wearing strip. The invention further relates to a corresponding heat-testing method.
Abstract:
The present invention provides methods for quantitating one or more biomolecules in a sample using IR based techniques, sample holder devices for use in such methods as well as methods for manufacturing such sample holder devices.
Abstract:
A sensor arrangement for melted materials includes an upper part and a detachable lower part. A tube extends coaxial to a longitudinal axis of the lower part, is closed on its end facing away from the upper part, and is open on the other end. The tube is arranged on an immersion end of the lower part facing away from the upper part. A guide tube, extending coaxial to a longitudinal axis of the upper part and being open on both ends, is arranged in a guide sleeve. A pressure acting in the direction of the lower part is applied to the guide tube by an elastic body and the guide tube touches against the lower part. One opening of the guide tube and the open end of the tube of the lower part are arranged adjacent to each other and coaxial to the longitudinal axis of the lower part.
Abstract:
A light trap suitable for use in an optical imaging system includes a hollow sphere, with a hollow cylindrical tube attached substantially tangent to the surface of the sphere, and forming a chimney. The interior and exterior surfaces of the sphere are coated with a low-reflective coating, such as flat black paint. A sample to be imaged is placed over the opening of the chimney with an imaging system and illumination source directed downward into the chimney itself. Light which passes through or around the sample is captured in the sphere, so that it is not reflected back into the imaging system.