Abstract:
A detection plate includes a track region having a bottom surface having a groove provided therein, and a well apart from the track region. The well has a bottom surface. The bottom surfaces of the track region and the well are disposed substantially on a plane. This detection plate detects a specimen rapidly and highly accurately with a simple structure.
Abstract:
The present disclosure provides an instrument and methods for detecting an analyte, comprising a light source capable of generating excitation light for exciting a plurality of luminescence labels, an excitation beam path extending between said light source and said analyte, a detector capable of detecting light emitted from said luminescence label, an emission beam path extending between said analyte and said detector, a filter carrier carrying two or more pairs of filter portions, each pair being related to one luminescence label and comprising a first filter portion for transmitting excitation light and a second filter portion for transmitting emitted light, wherein said first filter portion of one pair is said second filter portion of another pair, and wherein said filter portions are arranged in a manner that a respective one of said pairs can be brought in an operative condition in which said first filter portion is in said excitation beam path and said second filter portion is in said emission beam path, and wherein said filter carrier and said beam paths are movable with respect to each other by at least one moving mechanism so as to bring a respective one of said pairs in said operative condition.
Abstract:
The present disclosure provides instruments and methods for detecting an analyte which are capable of exciting a plurality of luminescence labels and detecting light emitted therefrom. The instrument includes a filter carrier adapted for carrying a plurality of filter portion pairs, each pair related to a luminescence label and comprising a first filter portion for transmitting excitation light, and a second filter portion for transmitting emitted light. The first filter portion of a pair comprises a second filter portion of another pair. Also, the filter portions are arranged such that a pair can be brought into an operative condition whereby a first filter portion is in the excitation beam path and a second filter portion is in the emission beam path. The filter carrier and beam paths may be moved with respect to each other by a moving mechanism so as to bring a pair into operative condition.
Abstract:
An optical detection apparatus which is capable of measuring a sample is provided. The optical detection apparatus includes a plurality of light emission units, a light receiving unit, a driving unit, and an analyzing unit. Each of the light emission units is capable of emitting a light beam. The light receiving unit is capable of receiving the light beam passing through the sample and is capable of converting the received light beam to an electrical signal. The driving unit is capable of changing the relative position of the light emission units and the sample. The analyzing unit is electrically connected to the light receiving unit and is capable of measuring a property of the sample by using the electrical signal. A number of the light receiving unit is less than a number of the light emission units. An optical measurement system including the optical detection apparatus is also provided.
Abstract:
A device for the photometric examination of samples has a sample-holder apparatus for at least two sample vessels, and a measuring apparatus and a moveable apparatus. The sample-holder apparatus is designed to be stationary, and the measuring apparatus is arranged on the moveable apparatus such that it can be displaced by means of the moveable apparatus.
Abstract:
For higher-speed absorbancy measurement, first and second rotating mirrors are attached individually to the opposite ends of a rotating shaft which is arranged vertically in the center of a reaction-tube table and driven by a motor. A light beam from a prelocated light source, for example, a lamp, is transferred along the axis of the rotating shaft to the first rotating mirror. Reflected by the first mirror, the light beam is applied to a reaction tube, and is reflected by a reflector which is attached to the tube. The light beam reflected by the second rotating mirror on the rotating shaft is transferred along the axis of the shaft to a photodetector, and is detected. In such an arrangement, the respective absorbancies of reaction tubes can be measured in predetermined directions, with respect to the rotating shaft in the center of the reaction-tube table, by simply rotating the shaft.
Abstract:
An apparatus for measuring a characteristic of a sample using a centrifuge and optical components is disclosed. The centrifuge may be a standard benchtop centrifuge. The optical components may be sized and dimensioned to fit, along with the sample, inside the centrifuge.
Abstract:
A biological material measuring instrument is described. The biological material measuring instrument includes a rotating body and a main body. The rotating body includes one or more cartridge holders having cuvettes in which a reagent and an analyte in a sample react. The main body includes a pair of light-emitting parts and light-receiving parts to optically measure the analyte in the sample. The rotating body further includes a light-emitting optical waveguide for guiding the light of the light-emitting parts to the cuvette and a light-receiving optical waveguide for guiding.
Abstract:
A detection plate includes a track region having a bottom surface having a groove provided therein, and a well apart from the track region. The well has a bottom surface. The bottom surfaces of the track region and the well are disposed substantially on a plane. This detection plate detects a specimen rapidly and highly accurately with a simple structure.
Abstract:
An optical detection apparatus which is capable of measuring a sample is provided. The optical detection apparatus includes a plurality of light emission units, a light receiving unit, a driving unit, and an analyzing unit. Each of the light emission units is capable of emitting a light beam. The light receiving unit is capable of receiving the light beam passing through the sample and is capable of converting the received light beam to an electrical signal. The driving unit is capable of changing the relative position of the light emission units and the sample. The analyzing unit is electrically connected to the light receiving unit and is capable of measuring a property of the sample by using the electrical signal. A number of the light receiving unit is less than a number of the light emission units. An optical measurement system including the optical detection apparatus is also provided.