Abstract:
An optical fluid tester device for testing a fluid sample in an ampoule includes an ampoule cradle, a radiation source, a radiation detector and an analyzer. The ampoule cradle supports the ampoule. The ampoule with the fluid sample serves as a lens whose focal properties are dependent on the index of refraction of the fluid sample. The radiation source irradiates the ampoule. The radiation detector is located opposite the radiation source so that the ampoule, when supported by the ampoule cradle, lies between the radiation source and the radiation detector. The detector serves to detect the intensity of the incident radiation. The analyzer verifies the composition of the fluid sample based on the detected intensity, which is dependent on the focal properties of the ampoule and is, therefore, indicative of the composition of the fluid sample.
Abstract:
An LED inspection lamp has plurality of LED sources for emitting electromagnetic radiation at different peak wavelengths for causing visible fluorescence in different leak detection dyes. A lens is associated with each LED. Radiation passing through lenses is superimposed in target area at target distance. Another LED inspection lamp has plurality of LEDs emitting electromagnetic radiation at a peak wavelength. A lens adaptor has lens housing for attachment to LED inspection lamp with a single LED for causing visible fluorescence, and a lens. Substantially all of the radiation from the LED passes through the lens and is focused in a target area at a target distance from the lenses. LED spot lights have a similar configuration. The LEDs may produce white light from distinct LEDs or from white LEDs. The light may be a flashlight or fixed spot light.
Abstract:
An inspection apparatus can include a handset and an elongated inspection tube extending from the handset. For reduction of heat energy radiating from one or more components of the apparatus, the apparatus can include a particularly designed heat sink assembly.
Abstract:
A substantially self-contained “on-board” material system investigation system functionally mounted on a three dimensional locational system to enable positioning at desired locations on, and distances from, the surface of a large sample, including the capability to easily and conveniently change the angle-of-incidence of a beam of electromagnetic radiation onto a sample surface.
Abstract:
The present invention provides an apparatus and method for identification of a chemical or a biological agent using a handheld or portable unit in non-laboratory conditions. More specifically, the system uses a portable unit containing an array of tunable lasers, which are stabilized with a digital controller. The apparatus excites the sample under test with a narrow band light source used to excite fluorescence. The fluorescent response is detected with a broadband detector and digitized. The information is then sent through wireless means to a remote server where a database of appropriate signatures is used to determine the identity of the sample. The results are sent back to the portable unit or to a Personal Digital Assistant (PDA).
Abstract:
A multichannel fluorosensor includes an optical module and an electronic module combined in a watertight housing with an underwater connector. The fluorosensor has an integral calibrator for periodical sensitivity validation of the fluorosensor. The optical module has one or several excitation channels and one or several emission channels that use a mutual focusing system. To increase efficiency, the excitation and emission channels each have a micro-collimator made with one or more ball lenses. Each excitation channel has a light emitting diode and an optical filter. Each emission channel has a photodiode with a preamplifier and an optical filter. The electronic module connects directly to the optical module and includes a lock-in amplifier, a power supply and a controller with an A/D converter and a connector. The calibrator provides a response proportional to the excitation intensity, and matches with spectral parameter of fluorescence for the analyzed fluorescent substance.
Abstract:
An LED inspection lamp has plurality of LED sources for emitting electromagnetic radiation at different peak wavelengths for causing visible fluorescence in different leak detection dyes. A lens is associated with each LED. Radiation passing through lenses is superimposed in target area at target distance. Another LED inspection lamp has plurality of LEDs emitting electromagnetic radiation at a peak wavelength. A lens adaptor has lens housing for attachment to LED inspection lamp with a single LED for causing visible fluorescence, and a lens. Substantially all of the radiation from the LED passes through the lens and is focused in a target area at a target distance from the lenses. LED spot lights have a similar configuration. The LEDs may produce white light from distinct LEDs or from white LEDs. The light may be a flashlight or fixed spot light.
Abstract:
The present invention includes an assay method for detecting an analyte in a sample. The assay includes a solid surface such as a nitrocellulose membrane. It also includes providing a sample is applied to the solid surface and detecting the presence or absence of the analyte using a fluorescent label from a lanthanide label. The invention also includes a device for detecting the fluorescence in or on an assay test strip. The device includes a housing, a solid surface and an ultraviolet radiation emitting LED.
Abstract:
A system and method for performing UV LED-based absorption detection for capillary liquid chromatography for detecting and quantifying compounds in a liquid, wherein a simplified system eliminates the need for a beam splitter and a reference cell by using a stable UV source, and power requirements are reduced, resulting in a portable and substantially smaller system with relatively low detection limits.
Abstract:
A sample investigation system (ES) in functional combination with an alignment system (AS), and methodology of enabling calibration and very fast, (eg. seconds), sample height, angle-of-incidence and plane-of-incidence adjustments, with application in mapping ellipsometer or the like systems.