Abstract:
A method for fabricating an optical modulator includes forming n-type layer, a first oxide portion on a portion of the n-type layer, and a second oxide portion on a second portion of the n-type layer, patterning a first masking layer over the first oxide portion, portions of a planar surface of the n-type layer, and portions of the second oxide portion, implanting p-type dopants in the n-type layer to form a first p-type region and a second p-type region, removing the first masking layer, patterning a second masking layer over the first oxide portion, a portion of the first p-type region, and a portion of the n-type layer, and implanting p-type dopants in exposed portions of the n-type layer, exposed portions of the first p-type region, and regions of the n-type layer and the second p-type region disposed between the substrate and the second oxide portion.
Abstract:
A method for fabricating an optical modulator includes forming n-type layer, a first oxide portion on a portion of the n-type layer, and a second oxide portion on a second portion of the n-type layer, patterning a first masking layer over the first oxide portion, portions of a planar surface of the n-type layer, and portions of the second oxide portion, implanting p-type dopants in the n-type layer to form a first p-type region and a second p-type region, removing the first masking layer, patterning a second masking layer over the first oxide portion, a portion of the first p-type region, and a portion of the n-type layer, and implanting p-type dopants in exposed portions of the n-type layer, exposed portions of the first p-type region, and regions of the n-type layer and the second p-type region disposed between the substrate and the second oxide portion.
Abstract:
A liquid crystal display device includes a liquid crystal panel and an illumination unit. The illumination unit has a planar light emitting region formed by an EL element. The light emitting region is formed by a plurality of linear light emitting regions that extend in a direction perpendicular to the vertical scanning direction of liquid crystal. The linear light emitting regions are switched between a light emitting state and a non-light emitting state based on a command signal from a controller in a manner that the linear light emitting regions sequentially emit light in synchronization with vertical scanning of the liquid crystal. Each linear light emitting region is controlled to be in the non-light emitting state at least during a drive data rewriting period of a portion of the liquid crystal immediately above the linear light emitting region.
Abstract:
An attenuating counter-propagating (ACP) optical phase modulator introduces zero propagation delay. An optical field is modulated by an electromagnetic field. Within the ACP modulator, the optical field is propagated in an opposite direction to the propagation direction of the electromagnetic field. The electromagnetic field is attenuated within the ACP modulator. In an example embodiment, the length of the modulator is greater than the attenuation length of the electromagnetic field.
Abstract:
Method and apparatus are provided for displaying an image to a viewer with reduced visual artifacts. The apparatus comprises a display panel for forming the image using an array of pixels with distributed active regions, and a viewing arrangement optically situated between the display panel and the viewer for transferring the image formed on the display panel to the viewer with limited angular pixel subtense. The distributed active regions of the pixels are desirably divided into at least two simultaneously switched portions at least partly separated by or surrounding a significant portion of the non-switchable region. First order spatial harmonics and associated artifacts are reduced by the distributed apertures and second order and higher harmonics are reduced by limiting the pixel subtense angle seen by the viewer. A significant reduction in visual artifacts arising from the periodic structure of the display panel is obtained.
Abstract:
An electrooptical device is provided comprising at least one substrate, at least one pair of electrodes and at least one layer of an electrooptical material. The electrooptical material represents an optically anisotropic thin crystal film and contains molecules having aromatic rings and possessing a lattice with an interplanar spacing (Bragg's reflection) of 3.4null0.2 {acute over (null)} along one of optical axes. The electrooptical material has anisotropic refractive indices and/or anisotropic absorption coefficients that are depended on an electric field strength.
Abstract:
A liquid crystal grating and a fabrication method thereof, and a display device are provided. The liquid crystal grating comprises a first substrate (1) and a second substrate (2) provided opposite to each other, and a liquid crystal layer (7); a plate-shaped transparent substrate (3) is provided on the first substrate (1), and a second transparent conductive layer (4), a transparent insulating layer (5) and a first transparent conductive layer (6) are sequentially provided on the second substrate (2); the first transparent conductive layer (6) includes first strip-shaped transparent electrodes (61) and second strip-shaped transparent electrodes (62) which are alternately provided, and there is a gap between the first strip-shaped transparent electrode (61) and the second strip-shaped transparent electrode (62) adjacent to each other; and the second transparent conductive layer (4) includes third strip-shaped transparent electrodes (41) provided at intervals.
Abstract:
An array substrate of a TFT-LCD, comprising: a base substrate; gate lines and data lines formed on the substrate, the gate lines and the data lines crossing with each other to define a plurality of pixel units each of which comprises a thin film transistor, a first electrode layer and a second electrode layer, wherein the first electrode layer is separated from the second electrode layer through an insulation layer; the first electrode layer comprises a plurality of first electrodes separated by openings; the second electrode layer comprises a plurality of second electrodes separated by openings; the second electrodes comprise overlapping electrodes each of which completely overlaps with the first electrodes and non-overlapping electrodes whose edges are completely located within an region corresponding to the openings in the first electrode layer.
Abstract:
An optical modulator device includes a body portion operative to propagate an optical mode along a longitudinal axis of the body portion, the body portion comprising a first layer disposed on a second layer, wherein the first layer includes a first p-type doped region adjacent to a first n-type doped region along the longitudinal axis of the body portion, and the second layer includes a second n-type doped region disposed on the first p-type doped region and a second p-type doped region adjacent to the second n-type doped region along the longitudinal axis of the body portion, the second p-type doped region disposed on the first n-type doped region.
Abstract:
A system for generating signals for Raman vibrational analysis, particularly for a CARS microscope or spectroscope of an external specimen, the system including a laser source capable of emitting at least one fundamental optical pulse in a first band of fundamental frequencies including at least one first and one second fundamental frequencies; a second-harmonic generating system including at least one nonlinear optical crystal for converting the at least one fundamental optical pulse into a first and a second-harmonic optical pulse; and a Raman vibrational analysis apparatus capable of receiving the first and second second-harmonic pulses and direct them toward the specimen.