Abstract:
To detect a power supply failure on an intrinsically safe field bus of a manufacturing process control system in an efficient manner there is provided a field device with a discharge protection unit which is connected to a control bus for supply of an operating current from the control bus to the field device. The discharge protection unit inhibits a discharge of energy stored in the field device to the control bus. The field device also comprises a controller unit adapted to control the operation of the field device and being powered with the operating current from the control bus. According to the present invention the discharge protection unit comprises at least two rectifying elements inserted into the current path of the operating current with identical conducting directions and an input signal or an output signal of a selected rectifying element is supplied as interrupt signal to the controller unit for power supply failure detection.
Abstract:
Conversion circuitry for use in a process control system is adapted for coupling to a primary process control loop. Digital receiver circuitry in the conversion circuitry receives a digital signal transmitted over the primary process control loop from a field transmitter and responsively provides a digital output. A microprocessor receives the digital output and responsively provides a secondary loop control output. Secondary loop control circuitry for coupling to a secondary process control loop receives the secondary loop control output from the microprocessor and responsively controls current flowing through the secondary process control loop. The current flowing through the secondary process control loop is related to the digital signal transmitted by the field transmitter.
Abstract:
An automation facility and method for expanding the automation facility with at least one field device, wherein expansion of the expansion of the automation facility with a further field device occurs in a simplified manner such that no disruptive influence on process control during the expansion occurs.
Abstract:
An automation device includes a master module, and a slave unit having a slave modules, where an IM module of the slave modules of the slave unit is connected to the master module via a bus, where each of the modules is parameterizable using a message transmitted to the IM module by the master module, the message includes a data area for each of the slave modules for parameterization of each of the slave modules, and the message includes a data area for each slave module for its parameterization, wherein at least one default parameter data record is stored in at least one of the slave modules, and wherein a data record index, which is stored in that data area of the message which is provided for the at least one slave module is provided for accessing the at least one default parameter data record.
Abstract:
Systems (200, 230, 240) and methods (700) for controlling a simulation of an operation of a Fieldbus system (100) comprising at least one FIM (114, 116) communicatively coupled to field devices (122, 124). The methods involve initiating a current simulation (CS) of an operation of the FIM and/or field devices. The methods also involve obtaining intermediate simulation information (ISI) indicating a status/progress of CS. The methods further involve displaying ISI to a user of a simulation system and displaying visual elements (610, . . . , 620) for controlling the progress of CS to the user. Gantt charts (672, 674) for the FIM/field devices and visual content showing data exchanges between software elements and/or hardware elements of the simulation system can further be displayed to the user. The visual elements can facilitate speeding up CS, slowing down CS, moving the progress of CS backwards/forwards, and/or stopping/re-starting the CS.
Abstract:
A process control system (1) comprises at least one process control computer (2) and field units (4) connected thereto via a bus system. An, in particular, intrinsically safe data transmission device (5) is connected between the process control computer and the assigned field units. This data transmission device comprises a data adaptation device (6) and a data distributing device (7). In order to be able to connect more field units per data adaptation device while simultaneously reducing the costs per field unit, the data adaptation device (6) and its assigned supply devices (8) have an explosion-proof design, and each supply device is connected to the data distributing devices via an explosion-proof line, whereby these data distributing devices or field units connected thereto have a barrier device for limiting the applied power.
Abstract:
A method and system for simulating the control of a process with a controller. The method creates a virtual process scheme having virtual devices connected on a virtual bus, such as a Fieldbus. The virtual scheme also includes process information. The process scheme is stored in a read/write medium and configured for communication access by a controller. The communication configuration uses an actual bus in bus protocol, such as a Fieldbus protocol. The actual bus couples with the virtual bus to replicate actual “real world” communication across the particular bus protocol. The DCS generates and transmits control communication, such as control commands based on data representing the virtual scheme. The virtual scheme data is dynamically updated with an associated Information Handling System to replicate an actual dynamic process. The seamless communication link coupled with the dynamic virtual scheme data simulates process control for the DCS.
Abstract:
A process control system (1) comprises at least one process control computer (2) and field units (4) connected thereto via a bus system. An, in particular, intrinsically safe data transmission device (5) is connected between the process control computer and the assigned field units. This data transmission device comprises a data adaptation device (6) and a data distributing device (7). In order to be able to connect more field units per data adaptation device while simultaneously reducing the costs per field unit, the data adaptation device (6) and its assigned supply devices (8) have an explosion-proof design, and each supply device is connected to the data distributing devices via an explosion-proof line, whereby these data distributing devices or field units connected thereto have a barrier device for limiting the applied power.
Abstract:
A field device that communicates in accordance with Ethernet signaling is provided. The field device is powered by virtue of its Ethernet connection. The field device preferably includes a feature board that includes an Ethernet network connection and a field device connection. The feature board is configured to power the field device with power received through the Ethernet network connection. The feature board interacts with the field device using a process industry standard communication protocol. A method of operating a field device is also provided.
Abstract:
A process control system capable of executing a function after initiation thereof by a user includes a computer having a memory and a processing unit. A security module stored in the memory of the computer and adapted to be executed on the processing unit of the computer analyzes security information to determine whether the function should be executed. The security information is collected contemporaneously with the initiation of the function and in association therewith.