Abstract:
A method of joining an end face of a first electric component to an end face of a second electric component includes applying a first metal layer to the end face of the first electric component to form a first metallized layer and applying a second metal layer to the end face of the second electric component to form a second metallized layer. A first fusible alloy layer is applied to the first metallized layer by melting a fusible alloy and propelling the melted fusible alloy onto the first metallized layer, and a second fusible alloy layer is applied to the second metallized layer by melting a fusible alloy and propelling the melted fusible alloy to the second metallized layer. The method further includes contacting the first fusible alloy layer to the second fusible alloy layer. Next, the end faces and fusible alloy layers are heated to melt the fusible alloy layers. After heating, the end faces and fusible alloy layers are cooled to form a bond between the end faces.
Abstract:
Metal oxide varistors (MOVs) are employed in surge protection devices, such as overvoltage protection devices, between signal lines and ground to reduce the capacitance and the capacitive imbalance introduced by the overvoltage protector, thereby improving higher frequency transmissions, such as xDSL communications, over a twisted-pair telecommunications network. The MOVs can be stacked electrically in series to reduce the capacitance of each MOV and to reduce the variability, tolerance or spread of the capacitance between MOVs. Asymmetrical MOVs with electrodes having different surface areas can also be used to reduce capacitance and to reduce capacitive imbalance between MOVs. Furthermore, Asymmetrical MOVs, as well as MOVs with electrodes having the same surface area, can be stacked electrically in series. Such series stacked, asymmetrical, and series stacked asymmetrical MOVs can be used in parallel with a gas discharge tube to form, for example, a station protector for use at a customer premises.
Abstract:
Monocrystalline nickel-cobalt-manganese-copper oxide having a cubic spinel structure over a broad range of concentration ratios of manganese/cobalt/nickel/copper, including methods of producing such monocrystals, particularly those having a quaternary cubic spinel structure. Sensors having desirable electrical properties are disclosed, which sensors comprise at least a portion of such monocrystals. In particular, such sensors are highly accurate temperature sensors or thermistors having high sensitivity, good reproducibility and improved aging characteristics.
Abstract:
A fuse assembly comprising a fuse element and a fuse cavity are formed integrally with the body of a Metal Oxide Varistor (MOV). Melting of the fuse element forms fused material which flows into the fuse cavity. The molten material electrically joins the metalization films on each side of the MOV which causes the MOV to fail shorted before the MOV can overheat and fracture from over voltage caused by excessive transient voltages. The fuse element has the current carrying capability to allow a resultant current to flow which will cause the primary circuit protection device (fuse or circuit breaker) to open. This provides protection against a violent fracture of the MOV and a MOV that can no longer function because it has opened and is undetected.
Abstract:
New non-linear resistors having a remarkably stable volt-ampere characteristic are provided. Such resistors comprise several sintered wafers superposed, said sintered wafer consisting of iron oxide as the main component and the respective prescribed quantities of calcium oxide, rare earth oxide and the like, and electrodes applied to opposite surfaces of said several sintered wafers superposed and are based on utilization of the property of the contact surfaces between said several sintered wafers superposed.
Abstract:
The present disclosure specifies a varistor comprising a ceramic body, which comprises a functional ceramic, and electrodes arranged inside the ceramic body. The electrodes include non-floating electrodes, which are electrically connected to external contacts of the varistor, respectively. The electrodes include at least three floating electrodes, which are electrically isolated with respect to the external contacts. At least two floating electrodes are arranged in the same layer, and each of the floating electrodes overlaps with at least two further electrodes. At least two floating electrodes overlap with one of the non-floating electrodes, respectively. A distance (D1) is defined along a longitudinal axis of the ceramic body between two of the electrodes overlapping with a first floating electrodes, and a distance (D2) is defined perpendicular to the longitudinal axis between the first floating electrode and one of the overlapping electrodes. The distance (D1) is at least twice the distance (D2).
Abstract:
A structure and method for fabricating a laterally configured thin film varistor surge protection device using low temperature sputtering techniques which do not damage IC device components contiguous to the varistor being fabricated. The lateral thin film varistor may include a continuous layer of alternating regions of a first metal oxide layer and a second metal oxide layer formed between two laterally spaced electrodes using a low temperature sputtering process followed by a low temperature annealing process.
Abstract:
A structure and method for fabricating a laterally configured thin film varistor surge protection device using low temperature sputtering techniques which do not damage IC device components contiguous to the varistor being fabricated. The lateral thin film varistor may include of a continuous layer of alternating regions of a first metal oxide layer and a second metal oxide layer formed between two laterally spaced electrodes using a low temperature sputtering process followed by a low temperature annealing process.
Abstract:
A structure and method for fabricating a laterally configured thin film varistor surge protection device using low temperature sputtering techniques which do not damage IC device components contiguous to the varistor being fabricated. The lateral thin film varistor may include a continuous layer of alternating regions of a first metal oxide layer and a second metal oxide layer formed between two laterally spaced electrodes using a low temperature sputtering process followed by a low temperature annealing process.