Abstract:
An insulated-gate semiconductor device, which has trenches arranged in a chip structure, the trenches defining both sidewalls in a first and second sidewall surface facing each other, includes: a first unit cell including a main-electrode region in contact with a first sidewall surface of a first trench, a base region in contact with a bottom surface of the main-electrode region and the first sidewall surface, a drift layer in contact with a bottom surface of the base region and the first sidewall surface, and a gate protection-region in contact with the second sidewall surface and a bottom surface of the first trench; and a second unit cell including an operation suppression region in contact with a first sidewall surface and a second sidewall surface of a second trench, wherein the second unit cell includes the second trench located at one end of an array of the trenches.
Abstract:
A manufacturable and economically viable edge termination structure allows a semiconductor device to withstand a very high reverse blocking voltage (for example, 8500 volts) without suffering breakdown. A P type peripheral aluminum diffusion region extends around the bottom periphery of a thick die. The peripheral aluminum diffusion region extends upward from the bottom surface of the die, extending into N− type bulk silicon. A deep peripheral trench extends around the upper periphery of the die. The deep trench extends from the topside of the die down toward the peripheral aluminum diffusion region. A P type sidewall doped region extends laterally inward from the inner sidewall of the trench, and extends laterally outward from the outer sidewall of the trench. The P type sidewall doped region joins with the P type peripheral aluminum diffusion region, thereby forming a separation edge diffusion structure that surrounds the active area of the die.
Abstract:
The present application relates to a turn-off power semiconductor device having a wafer with an active region and a termination region surrounding the active region, a rubber ring as an edge passivation for the wafer and a gate ring placed on a ring-shaped gate contact on the termination region for contacting the gate electrodes of a thyristor cell formed in the active region of the wafer. In the turn-off power semiconductor device, the outer circumferential surface of the gate ring is in contact with the rubber ring to define the inner border of the rubber ring. The area consumed by the ring-shaped gate contact on the termination or edge region can be minimized. The upper surface of the gate ring and the upper surface of the rubber ring form a continuous surface extending in a plane parallel to the first main side of the wafer.
Abstract:
A semiconductor switch comprises a PNPN structure arranged to provide an SCR-like functionality, and a MOS gate structure, preferably integrated on a common substrate. The switch includes ohmic contacts for the MOS gate, and for the cathode and gate regions of the PNPN structure; the anode contact is intrinsic. A fixed voltage is typically applied to an external node. The MOS gate structure allows current to be conducted between the external node and the intrinsic anode when on, and the PNPN structure conducts the current from the anode to the cathode when an appropriate voltage is applied to the gate contact. Regenerative feedback keeps the switch on once it begins to conduct. The MOS gate inhibits the flow of current between the external node and anode—and thereby turns off the switch—when off. When on, the MOS gate's channel resistance serves as a ballast resistor.
Abstract:
An integrated FET-thyristor device includes a semiconductor substrate of a first conductivity type, a first semiconductor region of a second conductivity type formed in the substrate proximate an upper surface of the substrate, and a second semiconductor region of the second conductivity type formed in the substrate proximate a bottom surface of the substrate. The second semiconductor region is substantially vertically aligned with and spaced apart from the first semiconductor region. A third semiconductor region of the first conductivity type is formed in a portion of the first semiconductor region proximate the upper surface of the substrate. At least one gate region of the second conductivity type is formed on a sidewall of the substrate and substantially surrounding at least a portion of each of the first, second and third semiconductor regions.
Abstract:
A gate electrode (1a) is formed on the outer peripheral step portion (1′) of a semiconductor substrate (1) so as to face a pressure-contact supporting block (6), and a convex contacting portion (1g) is formed on a predetermined position on the surface of the gate electrode to contact the pressure contact supporting block. The surface area of the gate electrode ranging from the inner periphery to a position adjacent to the convex contacting portion, is coated with an insulation film (1d). The convex contacting portion (1g) is formed of a convex portion integral with the gate electrode or formed of another gate electrode (1a′).
Abstract:
A gate electrode (1a) is formed on the outer peripheral step portion (1null) of a semiconductor substrate (1) so as to face a pressure-contact supporting block (6), and a convex contacting portion (1g) is formed on a predetermined position on the surface of the gate electrode to contact the pressure contact supporting block. The surface area of the gate electrode ranging from the inner periphery to a position adjacent to the convex contacting portion, is coated with an insulation film (1d). The convex contacting portion (1g) is formed of a convex portion integral with the gate electrode or formed of another gate electrode (1anull).
Abstract:
Power semiconductor devices have a plurality of semiconductor layers of alternating p-type and n-type conductivity and top and bottom device surfaces. A layer of the top surface forms a control layer. A semiconductor layer junction, remote from top and bottom device surfaces, forms a blocking p-n junction capable of sustaining the applied device voltage. A top ohmic contact overlays a top conductive region extending from the top surface into the control layer. A conductive tub region, spaced apart from the top conductive region, extends from the top surface at least through the control layer. A field effect region is disposed in the control layer between the top conductive region and tub region. A gate contact is formed over the field effect region causing the creation and interruption of a conductive channel between the top conductive region and the conductive tub region so as to turn the device on and off. In one device embodiment, a separate latch-on gate overlying the conductive tub is provided for device turn-on.
Abstract:
A new semiconductor power device, suitable for electrical switching in automotive applications, is proposed. This device combines the low specific on-resistance achievable with bipolar regenerative switching devices with the convenience of insulated gate control of not only turn-on but also turn-off. A device structure is presented that also includes a pinch resistance effect to more rapidly produce turn-off. The anode region of the device is electrically shorted to its contiguous N-type region.
Abstract:
A new semiconductor power device, suitable for electrical switching in automotive applications, is proposed. This device combines the low specific on-resistance achievable with bipolar regenerative switching devices with the convenience of insulated gate control of not only turn-on but also turn-off. A device structure is presented that also includes a pinch resistance effect to more rapidly produce turn-off.