Abstract:
One method disclosed includes, among other things, removing a sacrificial gate structure to thereby define a replacement gate cavity, performing an etching process through the replacement gate cavity to define a fin structure in a layer of semiconductor material using a patterned hard mask exposed within the replacement gate cavity as an etch mask and forming a replacement gate structure in the replacement gate cavity around at least a portion of the fin structure.
Abstract:
A method of forming a semiconductor structure includes forming a first isolation region between fins of a first group of fins and between fins of a second group of fins. The first a second group of fins are formed in a bulk semiconductor substrate. A second isolation region is formed between the first group of fins and the second group of fins, the second isolation region extends through a portion of the first isolation region such that the first and second isolation regions are in direct contact and a height above the bulk semiconductor substrate of the second isolation region is greater than a height above the bulk semiconductor substrate of the first isolation region.
Abstract:
One method disclosed includes, among other things, removing a sacrificial gate structure to thereby define a replacement gate cavity, performing an etching process through the replacement gate cavity to define a fin structure in a layer of semiconductor material using a patterned hard mask exposed within the replacement gate cavity as an etch mask and forming a replacement gate structure in the replacement gate cavity around at least a portion of the fin structure.
Abstract:
Disclosed are methods and devices that involve formation of alternating layers of different semiconductor materials in the channel region of FinFET devices. The methods involve forming such alternating layers of different semiconductor materials in a cavity formed above the substrate fin and thereafter forming a gate structure around the fin using gate first or gate last techniques.
Abstract:
are methods and devices that involve formation of alternating layers of different semiconductor materials in the channel region of FinFET devices. The methods and devices disclosed herein involve forming a doped silicon substrate fin and thereafter forming a layer of silicon/germanium around the substrate fin. The methods and devices also include forming a gate structure around the layer of silicon/germanium using gate first or gate last techniques.
Abstract:
In an exemplary embodiment, a method for fabricating integrated circuits includes providing a semiconductor substrate. The method etches the semiconductor substrate to form a non-planar transistor structure having sidewalls. On a standard (100) substrate the fin sidewalls have (110) surface plane if the fins are aligned or perpendicular with the wafer notch. The method includes depositing a sacrificial liner along the sidewalls of the non-planar transistor structure. Further, a confining material is deposited overlying the semiconductor substrate and adjacent the sacrificial liner. The method includes removing at least a portion of the sacrificial liner and forming a void between the sidewalls of the non-planar transistor structure and the confining material. A cladding layer is epitaxially grown in the void. Since the sidewall growth is limited by the confining material, a cladding layer of uniform thickness is enabled on fins with (110) sidewall and (100) top surface.