Abstract:
A digital broadcast system including a broadcast receiving system and data processing method are disclosed. In the broadcast receiving system receiving broadcast signals, the broadcast receiving system includes a transmission parameter decoding unit, a known sequence detector, and a burst controller. The transmission parameter decoding unit detects information on a burst of a received signal from broadcast data having main service data and mobile service data multiplexed therein within a field of the received signal and outputs the detected information on the burst. The known sequence detector receives burst information from the transmission parameter decoding unit and uses the received burst information and known data position information included in the received data, so as to output burst control information. The burst controller uses the burst control information to control power supply of the broadcast receiving system.
Abstract:
A DTV transmitting system includes an encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizer randomizes the coded enhanced data, and the block processor codes the randomized data at an effective coding rate of 1/H. The group formatter forms a group of enhanced data having data regions, and inserts the coded enhanced data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into corresponding data bytes.
Abstract:
A broadcast transmitter and a method of processing broadcast data in the broadcast transmitter are disclosed. The method includes randomizing broadcast service data, first encoding the randomized broadcast service data to add parity data, second encoding the first-encoded broadcast service data at a code rate of D/E, first interleaving the second-encoded broadcast service data, encoding signaling data for signaling the broadcast service data, modulating the first-interleaved broadcast service data and the encoded signaling data, and transmitting the modulated data.
Abstract:
A digital broadcasting system and a data processing method are disclosed. A receiver receives a broadcast signal including mobile service data and main service data. A known data detector detects known data from the broadcast signal. An equalizer performs channel equalization on the mobile service data received by means of the detected known data. An RS frame decoder acquires an RS frame from the channel-equalized mobile service data. A management processor extracts a Generic Stream Encapsulation (GSE) packet from a GSE Base Band (BB) constructing one row of the RS frame, and calculates an IP datagram from the extracted GSE packet. A presentation processor displays broadcast data using data contained in the calculated IP datagram.
Abstract:
According to one embodiment, a method of processing broadcast data in a broadcast transmitter includes: encoding the broadcast data for broadcast service; encoding signaling information for signaling the broadcast data; assigning the encoded broadcast data and the encoded signaling information into a signal frame; and transmitting a broadcast signal including the signal frame. The broadcast signal further includes a signaling table having access information of the broadcast data. The signaling table includes service id information for identifying the broadcast service and component information for indicating a number of components in the broadcast service.
Abstract:
A DTV transmitting system includes a frame encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The frame encoder builds an enhanced data frame and adds parity data into the data frame. The frame encoder further divides the data frame into first and second sub-frames including first and second portions of the parity data, respectively, and permutes a plurality of the first sub-frames and a plurality of the second sub-frames, respectively. The randomizer randomizes enhanced data in the permuted sub-frames, and the block processor codes the randomized data at a rate of 1/N1. The group formatter forms a group of enhanced data having one or more data regions and inserts the 1/N1 coded data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into enhanced data packets.
Abstract:
A digital broadcasting system and a data processing method are disclosed. In an aspect of the present invention, the present invention provides a data processing method including receiving a broadcast signal in which main service data and mobile service data are multiplexed, demodulating the received broadcast signal, outputting demodulation time information of a specific position of a broadcast signal frame, and acquiring reference time information contained in the mobile service data frame, setting the reference time information to a system time clock at a specific time based on the demodulation time information and decoding the mobile service data according to the system time clock.
Abstract:
A method of processing broadcast data in a transmitting system includes randomizing enhanced data; Reed-Solomon (RS) encoding and Cyclic Redundancy Check encoding the randomized enhanced data to build an RS frame; encoding the enhanced data in the built RS frame at a coding rate of at least ½ or ¼; first interleaving the encoded enhanced data; deinterleaving the first interleaved enhanced data; first multiplexing enhanced data packets including the deinterleaved enhanced data with main data packets including main data; randomizing the main data in the multiplexed enhanced and main data packets; second interleaving the enhanced data in the multiplexed enhanced and main data packets and the randomized main data to output a data group having the interleaved enhanced data and the interleaved main data; trellis encoding data in the data group in a trellis encoding unit; and second multiplexing the trellis-encoded data with field synchronization data and segment synchronization data.