Abstract:
Vapour turbine operating with geothermal vapours containing corrosive agents such as chlorides and/or sulfides in particular. The turbine comprises a series of rotor blades made of a nickel alloy containing a quantity of nickel ranging from 55% to 59% by weight to avoid the washing of the geothermal vapours, maintaining a high useful life of the series of rotor blades and vapour turbine.
Abstract:
In an abrasion preventive structure of a reciprocating compressor, by forming a coating layer made of Ni—P alloy material having high hardness onto the surface of a frame at which front (92) and rear (93) resonance springs are contacted or spring mounting grooves (91a, 92a) of a spring supporting rod (91) or spring fixation protrusions or the inner circumference of a cylinder built-in type frame, although each resonance spring (92, 93) is rotated while repeating compression/relaxation, it is possible to prevent abrasion of the spring mounting grooves (91a, 92a) or the spring fixation protrusions, and accordingly reliability of the compressor can be improved.
Abstract:
A sealing arrangement in a gas turbine engine comprises a rope seal held against a sealing surface by a resilient seal carrier in which the rope seal lies.
Abstract:
An object of the present invention is to provide a vacuum pump in which the corrosion resistance to a corrosive gas and the heat releasing property of a heated component are improved. In a rotor 11 incorporated in a pump case 1 of a vacuum pump P, there is provided a surface treatment layer 42 in which a nickel alloy layer 43 is formed by applying nickel with high corrosion resistance onto a base material 41 made of an aluminum alloy and a nickel oxide 44 with high emissivity is formed on the surface of the nickel alloy layer 43 by oxidizing nickel.
Abstract:
A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.
Abstract:
An article includes turbulation material bonded to a surface of a substrate via a bonding agent, such as a braze alloy. In an embodiment, the turbulation material includes a particulate phase of discrete metal alloy particles having an average particle size within a range of about 125 microns to about 4000 microns. Other embodiments include methods for applying turbulation and articles for forming turbulation.
Abstract:
In order to make labyrinth seal lips on the periphery of a metal moving part of a turbomachine, a thick layer of refractory material that adheres to the metal is made prior to assembling the moving part, the refractory material advantageously comprising at least one metal selected for example from Fe, Co, and Ni, together with at least one ceramic selected for example from borides, nitrides, carbides, and refractory oxides. The labyrinth seal lips that are to be made are machined to their final dimensions in the deposited thick layer.
Abstract:
A single crystal nickel base superalloy consists essentially of, in weight %, about 6.4% to about 6.8% Cr, about 9.3% to about 10.0% Co, above 6.7% to about 8.5% Ta, about 5.45% to about 5.75% Al, about 6.2% to about 6.6% W, about 0.5% to about 0.7% Mo, about 0.8% to about 1.2% Ti, about 2.8% to about 3.2% Re, up to about 0.12% Hf, about 0.01% to about 0.08% by weight C, up to about 0.10% B, and balance Ni and incidental impurities. The superalloy provides improved alloy cleanliness and castability while providing improved high temperature mechanical properties such as stress rupture life.
Abstract:
An article includes turbulation material bonded to a surface of a substrate via a bonding agent, such as a braze alloy. In an embodiment, the turbulation material includes a particulate phase of discrete metal alloy particles having an average particle size within a range of about 125 microns to about 4000 microns. Other embodiments include methods for applying turbulation and articles for forming turbulation.
Abstract:
The present invention relates to a method of repairing a Ni-based alloy part having an undercoat layer and a topcoat layer stacked on a Ni-based alloy base when the topcoat layer is damaged, comprising the steps of removing a peeled-off portion of the damaged topcoat layer and a denatured portion of the undercoat layer corresponding to the peeled-off portion, forming another undercoat layer by applying spraying to an opening portion of the undercoat layer in the atmosphere at a spray particle speed of 300 m/s or more and a base-material temperature of 300null C. or less, and forming another topcoat layer in the peeled-off portion of the topcoat layer