Abstract:
A plurality of transistors in which ratios of a channel length L to a channel width W, α=W/L, are different from each other is provided in parallel as output side transistors 105a to 105c in a current mirror circuit 101 which amplifies a photocurrent of a photoelectric conversion device and an internal resistor is connected to each of the output side transistors 105a to 105c in series. The sum of currents which flow through the plurality of transistors and the internal resistor is output, whereby a transistor with large amount of α can be driven in a linear range with low illuminance, and a transistor with small amount of α can be driven in a linear range with high illuminance, so that applicable illuminance range of the photoelectric conversion device can be widened.
Abstract translation:在通过放大光电流的电流镜电路101中,作为输出侧晶体管105a〜105c并联设置多个晶体管,其中沟道长度L与沟道宽度W,α= W / L的比例彼此不同 的一个光电转换装置和一个内部电阻器串联连接到每个输出侧晶体管105a至105c。 输出流过多个晶体管的电流和内部电阻器的总和,由此可以以低照度在线性范围内驱动具有大量α的晶体管,并且可以在a中驱动具有少量α的晶体管 具有高照度的线性范围,可以扩大光电转换装置的适用照度范围。
Abstract:
A structure includes a film having a plurality of nanoapertures. The nanoapertures are configured to allow the transmission of a predetermined subwavelength of light through the film via the plurality of nanoapertures. The structure also includes a semiconductor layer in connection with the film to facilitate the detection of the predetermined subwavelength of light transmitted through the film.
Abstract:
A light receiving module includes a substrate, a light receiving element mounted on the substrate, and a resin package for covering the light receiving element. The top portion of the resin package is formed with a lens for collecting external light to the light receiving element. The lens includes a light incident surface formed with irregularities for light dispersion. The light receiving module further includes a tubular body accommodated in the resin package. The tubular body is tapered as proceeding toward the light receiving element, and has an inner surface for light reflection. Light collected by the lens is reflected by the inner surface of the tubular body, to be detected by the light receiving element.
Abstract:
Methods and devices for low power optical detection and modulation in a slotted waveguide geometry filled with nonlinear electro-optic polymers are shown. Direct conversion of optical energy to electrical energy is enabled without external bias, via optical rectification, also enhancing electro-optic modulation.
Abstract:
A photoelectric converter device comprises a semiconductor substrate including a photoelectric converter element formed on its surface, a visible light filter arranged to at least partially cover the surface of the semiconductor substrate, and a support member attached to the surface of the semiconductor substrate. The photoelectric converter device further comprises, in an internal portion, a resin layer which absorbs infrared light. With this arrangement, undesirable influences of infrared light can be reduced.
Abstract:
The invention provides an imaging device comprised of nanoscale crossbar arrays upon a transmissive medium. The preferred embodiment employs a BOPET film as the transparent material bearing addressable nanoscale arrays, and the arrays connected to leads through micro lithographic techniques, and in turn connected to a logic device. An imaging volume is provided by stacking the array-bearing sheets. The volumetric imaging device functions omnidirectionally. By means of applying Fourier and/or geometric optics techniques to imaging data, various focal points and planes of focus can be calculated. The preferred embodiment is on the order of 1 cubic mm. Alternate embodiments include display and projection devices.
Abstract:
Methods and devices for low power optical detection and modulation in a slotted waveguide geometry filled with nonlinear electro-optic polymers are shown. Direct conversion of optical energy to electrical energy is enabled without external bias, via optical rectification, also enhancing electro-optic modulation.
Abstract:
An integrated optical detector and diffractive optical element includes a sensing element and a diffractive optical element. The sensing element and diffractive optical element are placed directly into the path of the beam emitted by the light source. The sensing element monitors the power of a light source, without diverting or reflecting light away from its beam. The diffractive optical element consists of a plurality of thin layers of optically transmissive material stacked on top of one another. An additional layer at the base of the diffractive optical element acts as a sensing element that is responsive to the power of an incident light beam. The response of the sensing element to light includes photoresistive, photovoltaic, and thermal responses. The sensing element may also be incorporated as part of the optical element. The optical element used with the sensing element may also be refractive or reflective.
Abstract:
The inventive sensor device includes a support structure, a sensing element mounted on the support substrate for sensing optical radiation and generating an electrical output signal in response thereto, and an encapsulant encapsulating the sensing element on the support structure. The encapsulant being configured to define a lens portion for focusing incident optical radiation onto an active surface of the sensing element, and an optical radiation collector portion surrounding the lens portion for collecting and redirecting optical radiation that is not incident the lens portion onto the active surface of the sensing element. The collector portion may be a parabolic reflector that reflects incident light by total internal reflection. The sensor device may be incorporated into an assembly including a diffuser positioned across an aperture, and/or may be incorporated into a vehicle accessory such as a rearview mirror assembly.
Abstract:
A photo semiconductor element is covered by a cap with an incident window permitting incident light to penetrate through a translucent member. The photo semiconductor element detects a quantity of incident light penetrating through the translucent member of the incident window. The translucent member of the incident window is made of a material capable of suppressing the transmitting light quantity of incident light components having wavelengths less than 700 nm and larger than 900 nm. A photoelectric current output of the photo semiconductor element is controlled by the incident light penetrating through the translucent member of the incident window. The photo semiconductor element operates in multiple ways as a thermosensing sensor and a photosensing sensor.