Abstract:
A method and apparatus for monitoring the condition of an electrical generator having at least one conductor. An insulator is provided for surrounding the conductor, the insulator includes a light generating material for producing a distinctive optical signature when the insulator degrades. An optical acquisition device is provided for acquiring the optical signature when the insulator degrades. A light detector means is coupled to the optical acquisition device and detects and then converts the optical signature to an electrical signal. A signal processor, responsive to the electrical signal, then monitors degradation of the insulator by sensing the electrical signal.
Abstract:
A variable filter spectrophotometer, for use with sample and reference; has a main member, a filter unit, a drive, a detector, a light distribution system, and a clamping circuit. The main member defines first and second beam paths, which are intersected by the filter unit. The filter unit has filtering and opaque portions. The filter unit is continuously movable relative to the beam paths in a repeating cycle from a first filtering relation in which the filtering portion is interposed in the first beam path and the opaque portion completely blocks the second beam path, to a first dark relation in which both beam paths are blocked, to a second filtering relation in which the filtering portion is interposed in the second beam path and the first beam path is completely blocked, and to a second dark relation in which both beam paths are completely blocked. The filtering portion is variably transmissive along a direction of movement of the filter unit. The drive continuously moves the filter unit relative to the beam paths. The detector produces a signal responsive to light received. The light distribution system directs light separately to and from the sample and reference, to and from the beam paths, and to the detector. The clamping circuit clamps the signal produced by the detector during the filtering relations to the signal produced by the detector during the dark relations.
Abstract:
The present invention is a scanning monochromator for producing a light beam which rapidly and repetitively varies in wavelength. The device is a subtractive double monochromator in which an intermediate slit is moved to effect wavelength scanning; the intermediate slit fitted in a rotating disk positioned at the intermediate focal plane of the monochromator. Two forms of the device are disclosed.
Abstract:
A repetitive spectrally selective shutter apparatus which has a filter assembly in the space between a set of optics and the resultant focal plane is disclosed. The filter assembly consists of a narrowband filter mounted at an angle between the faces of two juxtaposed wedge-shaped faceplates. When rotated, this apparatus provides repetitive open periods in the narrow spectral bandpass as a function of the speed at which the filter assembly is rotated.
Abstract:
An optical-fiber-based spectrometer utilizes a compact, P-C-board-mountable optical multiplexer which permits multiple channels of reference and measurement data from remote and hostile environments to be analyzed in rapid sequence utilizing synchronized computer data-storage and comparison to give rapid-fire answers to the question of the presence or absence of species of interest in a sample or process being analyzed, the relative light level in the reference and data channels being balanced by an optical attenuator having only an air path, attenuation being effected by controlled misalignment of optical fiber ends.
Abstract:
A software controlled automatic shutter is described which minimizes ultraviolet irradiation damage to optical components from a high intensity spectrophotometric light source. The shutter automatically opens when measurements are being made and closes when the photometer system is idle. The digital control system may be self contained so as to avoid complication of the main computer.
Abstract:
The invention provides on a method for measuring the spectrum of a material, wherein a sample (10) of the material to be tested is irradiated with a radiation of required wavelengths and the spectrum signals produced by an intensity measuring unit (34) as a result of the radiation reflected or transmitted by the sample (10) are measured. According to the present invention, a zero level signal produced by the intensity measuring unit (34) in an unradiated condition is measured and the measured zero level value is stored, then one or more spectrum signal measurements are performed at at least one wavelength and the measured one or more spectrum values are stored, then the zero level signal produced by the intensity measuring unit (34) is measured again in an unradiated condition and its value is stored, then preferably those one or more spectrum signal measurements at at least one wavelength prescribed and the storage of the measured values as well as the zero level signal measurement and the storage of the measured value are repeated as many times as required, and finally the stored spectrum values are modified by correction values generated on the basis of the stored zero level values.
Abstract:
A hand-held, battery powered instrument for the determination and recording of the intensity of radiation emitted or reflected by a target in the field in spectral bands from 400 nm to 12 micrometers. Two fields of view, typically 20.degree. and 1.degree., are provided. The pointing accuracy is 0.1.degree. or better. Multiple detectors are controlled by a single shutter. Gain and zero controls are preset, the whole spectral band is sampled in 4 seconds, and the results stored. They are later called up and shown on a liquid crystal display digitized to 9999.
Abstract:
A spectrum analyzing system measures or analyzes the colorimetric properties of a test sample at a preselected wavelength or range of wavelengths within the ultraviolet, visible, and near infrared regions. The system includes a spectrophotometer provided with a wideband light source, optical devices providing a sample light path and a reference light path, a chopper wheel allowing light to be directed alternately along the sample and reference paths interspersed with dark periods during which no light travels along either path, a dispersion grating for dispersing the light from both paths, a series of neutral density filters for limiting to various degrees the amount of light traversing each path, and a linear array of photodiodes for detecting the dispersed light at different wavelengths. The system also includes an electronic control section including a programmable power supply for controlling the intensity of light from the light source whereby the combination of the use of the neutral density filters in conjunction with controlling the intensity of light from the light source can be used to operate the photodiode array to prevent operation thereof near the saturated and dark current levels, and means for scanning the photodiode array at high speeds during rotation of the chopper wheel to provide a high speed spectral readout.
Abstract:
An electrostatic device includes a fixed electrode to which is attached an end edge of a coiled or curved variable resilient sheet electrode. An insulative layer separates the two electrodes, being either bonded to the fixed electrode or being bonded to the resilient electrode. The resilient variable electrode is caused to unroll upon the application of an electric potential between the two electrodes. The device is particularly adaptable for use as a light gate. It is capable of being actuated by an electrical potential either in a light transmission mode or in a variable reflectivity mode.