Abstract:
Some embodiments include a memory array having a first series of access/sense lines which extend along a first direction, a second series of access/sense lines over the first series of access/sense lines and which extend along a second direction substantially orthogonal to the first direction, and memory cells vertically between the first and second series of access/sense lines. Each memory cell is uniquely addressed by a combination of an access/sense line from the first series and an access/sense line from the second series. The memory cells have programmable material. At least some of the programmable material within each memory cell is a polygonal structure having a sidewall that extends along a third direction which is different from the first and second directions. Some embodiments include methods of forming memory arrays.
Abstract:
The disclosed technology generally relates to integrated circuit devices, and in particular to cross-point memory arrays and methods for fabricating the same. Line stacks are formed, including a storage material line disposed over lower a conductive line. Upper conductive lines are formed over and crossing the line stacks, exposing portions of the line stacks between adjacent upper conductive lines. After forming the upper conductive lines, storage elements are formed at intersections between the lower conductive lines and the upper conductive lines by removing storage materials from exposed portions of the line stacks, such that each storage element is laterally surrounded by spaces. A continuous sealing material laterally surrounds each of the storage elements.
Abstract:
Methods and memory devices formed using etch bias homogenization are provided. One example method of forming a memory device using etch bias homogenization includes forming conductive material at respective levels over a substrate. Each respective level of conductive material is electrically coupled to corresponding circuitry on the substrate during patterning of the respective level of conductive material so that each respective level of conductive material has a homogenized etch bias during patterning thereof. Each respective level of conductive material electrically coupled to corresponding circuitry on the substrate is patterned.
Abstract:
Some embodiments include a memory array having a first series of access/sense lines which extend along a first direction, a second series of access/sense lines over the first series of access/sense lines and which extend along a second direction substantially orthogonal to the first direction, and memory cells vertically between the first and second series of access/sense lines. Each memory cell is uniquely addressed by a combination of an access/sense line from the first series and an access/sense line from the second series. The memory cells have programmable material. At least some of the programmable material within each memory cell is a polygonal structure having a sidewall that extends along a third direction which is different from the first and second directions. Some embodiments include methods of forming memory arrays.
Abstract:
The disclosed technology generally relates to memory apparatuses and methods of operating the same, and more particularly to memory arrays and methods of reading memory cells in a memory array, such as a cross point memory array. In one aspect, the method comprises providing a memory array comprising a memory cell in one of a plurality of states. The method additionally comprises determining whether a threshold voltage (Vth) of the memory cell has a value within a predetermined read voltage window. A test pulse is applied to the memory cell if it is determined that the threshold voltage has a value within the predetermined read voltage window. The state of the memory cell may be determined based on a response of the memory cell to the test pulse, wherein the state corresponds to the one of the pluralities of states of the memory cell prior to receiving the test pulse.
Abstract:
Some embodiments include methods of forming memory cells. Heater structures are formed over an array of electrical nodes, and phase change material is formed across the heater structures. The phase change material is patterned into a plurality of confined structures, with the confined structures being in one-to-one correspondence with the heater structures and being spaced from one another by one or more insulative materials that entirely laterally surround each of the confined structures. Some embodiments include memory arrays having heater structures over an array of electrical nodes. Confined phase change material structures are over the heater structures and in one-to-one correspondence with the heater structures. The confined phase change material structures are spaced from one another by one or more insulative materials that entirely laterally surround each of the confined phase change material structures.
Abstract:
Some embodiments include methods of forming memory cells. A stack includes ovonic material over an electrically conductive region. The stack is patterned into rails that extend along a first direction. The rails are patterned into pillars. Electrically conductive lines are formed over the ovonic material. The electrically conductive lines extend along a second direction that intersects the first direction. The electrically conductive lines interconnect the pillars along the second direction. Some embodiments include a memory array having first electrically conductive lines extending along a first direction. The lines contain n-type doped regions of semiconductor material. Pillars are over the first conductive lines and contain mesas of the n-type doped regions together with p-type doped regions and ovonic material. Second electrically conductive lines are over the ovonic material and extend along a second direction that intersects the first direction. The second electrically conductive lines interconnect the pillars along the second direction.
Abstract:
A method and resulting structure, is disclosed to fabricate vertical bipolar junction transistors including a regular array of base contact pillars and emitter contact pillars with a at least one dimension below the minimum lithographical resolution, F, of the lithographic technique employed. A storage element, such as a phase change storage element, can be formed above the regular array of base contact pillars and emitter contact pillars.
Abstract:
Some embodiments include methods of forming memory cells. A stack includes ovonic material over an electrically conductive region. The stack is patterned into rails that extend along a first direction. The rails are patterned into pillars. Electrically conductive lines are formed over the ovonic material. The electrically conductive lines extend along a second direction that intersects the first direction. The electrically conductive lines interconnect the pillars along the second direction. Some embodiments include a memory array having first electrically conductive lines extending along a first direction. The lines contain n-type doped regions of semiconductor material. Pillars are over the first conductive lines and contain mesas of the n-type doped regions together with p-type doped regions and ovonic material. Second electrically conductive lines are over the ovonic material and extend along a second direction that intersects the first direction. The second electrically conductive lines interconnect the pillars along the second direction.
Abstract:
A resistive random access memory may include a memory array and a periphery around the memory array. Decoders in the periphery may be coupled to address lines in the array by forming a metallization in the periphery and the array at the same time using the same metal deposition. The metallization may form row lines in the array.