Abstract:
The electrodeionization water producing apparatus comprising a depletion chamber packed with an ion exchange material, the depletion chamber being partitioned by a cation exchange membrane on one side and an anion exchange membrane on the other side, and concentrate chambers installed on both sides of the depletion chamber with the cation exchange membrane and the anion exchange membrane disposed inbetween, the depletion chamber and the concentrate chambers disposing between an anode chamber equipped with an anode and a cathode chamber equipped with a cathode, wherein the concentrate chambers are packed with an organic porous ion exchange material having a continuous pore structure in which the wall made from interconnected macropores contains mesopores with an average diameter of 1 to 1,000 nullm. The apparatus ensures reduction of electric resistance and does not form scale in the concentrate chamber during long continuous operation.
Abstract:
Feed water, fed through an inlet 6 into a desalting compartment 8, flows around the end 4a of a anion-exchange membrane 4 surrounding an anode 2a. The feed water enters into a portion defined between the anion-exchange membrane 4 and a cation-exchange membrane 5, and flows around the end 5a of the cation-exchange membrane 5 surrounding a cathode 3a. Then, the water to be treated further flows around the ends 4b, 5b of ion-exchange membranes 4, 5 surrounding an anode 2b and a cathode 3b, respectively, and then flows out through a product water outlet 7. A part of product water is supplied to the concentrated water circulating within the concentrating compartment 30, 40. A part of the concentrated water flowing out of the concentrating compartment 30, 40 is added to concentrated water circulating within the concentrating compartment 10, 20. The diffusion of silica from the concentrating compartment is restricted. As a result, final product water containing extremely low silica concentration is obtained.
Abstract:
An electrodeionisation apparatus comprising a first deionising flow path and an integral second deionising flow path is described. The outflow from the first path is held in a holding tank prior to passage through the second flow path, and the outflow from the second path is available for use. Optionally, the second path outflow is partly or fully returned to the holding tank. Me recirculation of the already purified water in the holding tank maintains the water in the holding tank at a higher standard than otherwise “standing” purified water. The water in the holding tank could be separately made available for use. The apparatus requires the use of only a single pair of electrodes and hence one power supply. Moreover, the ion exchange materials in the first deionising flow path can be regenerated when water is not flowing through them such that they have a greater capacity for deionisation when required.
Abstract:
An electrodeionization apparatus has an anolyte compartment 17 having an anode 11, a catholyte compartment 18 having a cathode 12, concentrating compartments 15, and desalting compartments 16. The concentrating compartments 15 and the desalting compartments 16 are alternately formed between the anolyte compartment 17 and the catholyte compartment 18 by alternately arranging a plurality of anion-exchange membranes 13 and a plurality of cation-exchange membranes 14. The desalting compartments 16 are filled with ion-exchanger and the concentrating compartments 15 are filled with ion-exchanger, activated carbon, or electric conductor. Electrode water flows into the anolyte compartment 17 and the catholyte compartment 18. Concentrated water is introduced into the concentrating compartments 15. Raw water is fed into the desalting compartment 16 to produce the deionized water from the desalting compartment 16. Water containing silica or boron at a lower concentration than the raw water is introduced into the concentrating compartments 15 as the concentrated water in a direction from a side near an outlet for the deionized water toward a side near an inlet for the raw water of the desalting compartments 16. At least a part of concentrated water flowing out of the concentrating compartments 15 is discharged out of a circulatory system.
Abstract:
The object of this invention is to provide an electrical deionization apparatus with which various feed water types ranging from water of high ion concentration to water of low ion concentration can be consistently deionized with high efficiency. At least part of cation-exchange membranes and anion-exchange membranes alternate between electrodes to form an alternating array of deionization and concentration compartments and the deionization compartment contains a woven or non-woven fabric made of cation-exchange fiber that is placed on the cation-exchange membrane side in a face-to-face relationship with a woven or non-woven fabric made of anion-exchange fiber that is placed on the anion-exchange membrane side, with the passageway of feed water between the two woven or non-woven fabrics containing an ion-conducting spacer provided with an ion-exchanging capability.
Abstract:
Electrodeionization apparatus and method. The electrodeionization apparatus includes an ion-depleting compartment in which alternating layers of an electroactive media are positioned. One of the alternating layers is doped to provide a more balanced current distribution through the apparatus. The method involves providing reducing the difference in conductivity between the alternating layers positioned in the ion-depleting compartment by adding a dopant material to one of the layers.
Abstract:
An apparatus for producing deionized water, which has an ion exchanger accommodated in demineralizing compartments of an electrodialyzer having cation exchange membranes and anion exchange membranes alternately arranged between an anode and a cathode, wherein the ion exchanger is a composite ion exchanger comprising a first porous ion exchanger having a mixture of 60 to 95 wt % of cation exchange resin particles and 5 to 40 wt % of anion exchange resin particles bonded to each other and a second porous ion exchanger having a mixture of 60 to 95 wt % of anion exchange resin particles and 5 to 40 wt % of cation exchange resin particles bonded to each other.
Abstract:
Improved electrodialysis (ED) stacks are disclosed having one or more components selected from the group:a) cation exchange membranes having ion exchange groups predominantly sulfonic acid groups and a minor amount of weakly acidic and/or weakly basic groups or membranes which are selective to monovalent cations and simultaneously therewith, cation exchange granules selective to monovalent cations as packing in the dilute compartments;b) anion exchange membranes having as ion exchange groups only quaternary ammonium and/or quaternary phosphonium groups and substantially no primary, secondary and/or tertiary amine and/or phosphine groups or membranes which are selective to monovalent anions simultaneously therewith, anion exchange granules selective to monovalent anions as packing in the dilute compartments;c) as packing in the dilute compartment, anion exchange granules which are selective to monovalent anions, or cation exchange granules which are selective to monovalent cations, or cation exchange granules having as exchange groups a predominant amount of sulfonic acid groups and a minor amount of weakly acidic and/or weakly basic groups, or anion exchange granules consisting of organic polymers having as anion exchange groups only quaternary ammonium and/or quaternary phosphonium groups and almost no primary, secondary and/or tertiary amine and/or phosphine groups.
Abstract:
An apparatus for producing deionized water consisting essentially of an electrodialyzer having cation exchange membranes and anion exchange membranes alternately arranged between a cathode and an anode to form demineralizing compartments and concentrating compartments, and ion exchangers accommodated in the demineralizing compartments, wherein a pressure of from 0.1 to 20 kg/cm.sup.2 is exerted between the ion exchangers accommodated in the demineralizing compartments and the cation exchange membranes and anion exchange membranes defining the demineralizing compartments.
Abstract:
An electrically regeneratable electrochemical cell (30) for capacitive deionization and electrochemical purification and regeneration of electrodes includes two end plates (31, 32), one at each end of the cell (30). Two end electrodes (35, 36) are arranged one at each end of the cell (30), adjacent to the end plates (31, 32). An insulator layer (33) is interposed between each end plate (31, 32) and the adjacent end electrode (35, 36). Each end electrode (35, 36) includes a single sheet (44) of conductive material having a high specific surface area and sorption capacity. In one embodiment, the sheet (44) of conductive material is formed of carbon aerogel composite. The cell (30) further includes a plurality of generally identical double-sided intermediate electrodes (37-43) that are equidistally separated from each other, between the two end electrodes (35, 36). As the electrolyte enters the cell, it flows through a continuous open serpentine channel (65-71) defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cell (30), ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the cell (30) is saturated with the removed ions, the cell (30) is regenerated electrically, thus significantly minimizing secondary wastes.