Abstract:
A circuit for generating data load pulses of variable length as required includes a source for supplying a short load signal, and a delay element for generating longer pulses as of the short load signal. A static operating mode is provided wherein a load pulse is generated and maintained throughout static operation or as long as critical conditions (standby state, low voltage) persist. An extended pulse is always generated on exiting static operating mode; and the delay element may be disabled by a command when extended timing is not required.
Abstract:
A start up circuit causes a MOS transistor to be turned on by sensing local electrical quantities thereof, specifically the potential at the drain terminal of the MOS transistor. A small current is injected into the control terminal of the MOS transistor when the potential at the drain terminal is high. For the purpose, an electric network is arranged to couple these two terminals together.
Abstract:
A process for producing integrated circuits including the steps of: selectively growing field insulating regions of insulating material extending partly inside a substrate having a given type of conductivity; depositing a polycrystalline silicon layer on the substrate; shaping the polycrystalline silicon layer through a mask; and selectively implanting ions of the same conductivity type as the substrate, using the shaping mask, through the field insulating regions. The implanted ions penetrate the substrate and form channel stopper regions beneath the field insulating regions.
Abstract:
A circuit for selectively programming a single bit in non-volatile memory is disclosed. The circuit consists of at least one comparator, at least one transistor, and at least one logic gate for each elementary memory in the memory word. In operation, the circuit allows for individual correction of mis-programmed cells within the memory by comparing the actual contents of the memory with the desired contents. If the actual contents does not match the desired contents, that individual cell is re-programmed.
Abstract:
Since fault phenomena such as lowering of the cell gain and cell emptying occur during normal operation the present invention proposes that in the memory device the row and/or column address decoding means (RDEC,CDEC) comprise at least one non-volatile memory (NVM) for address mapping and that the reading and writing control logic (CL) comprise means (TST) designed to identify cell faults, such as low grain, in the rows and/or columns of the matrix (MAT) of the memory device and writing means (WM) designed to write on said non-volatile memory (NVM) during normal operation addresses corresponding to redundant rows and/or columns (RID) present in the matrix (MAT) to rectify said faults.
Abstract:
A programmable digital delay unit presenting a number of cascade-connected delay blocks, and a number of controlled bypass elements, one for each delay block. Each bypass element presents a bypass line and a multiplexer for selectively connecting the input or output of the respective delay block to the input of the next delay block. The delay blocks are formed by the cascade connection of flip-flops, and the number of flip-flops in each successive delay block, from the input of the delay unit, decreases in an arithmetic progression to the power of two, so that the selection signals for the respective multiplexers represent the bits of a digital word specifying the required delay.
Abstract:
A process for manufacturing high-density MOS-technology power devices includes the steps of: forming a conductive insulated gate layer on a surface of a lightly doped semiconductor material layer of a first conductivity type; forming an insulating material layer over the insulated gate layer; selectively removing the insulating material layer and the underlying insulated gate layer to form a plurality of elongated windows having two elongated edges and two short edges, delimiting respective uncovered surface stripes of the semiconductor material layer; implanting a high dose of a first dopant of the first conductivity type along two directions which lie in a plane transversal to said elongated windows and orthogonal to the semiconductor material layer surface, and which are substantially symmetrically tilted at a first prescribed angle with respect to a direction orthogonal to the semiconductor material layer surface, the first angle depending on the overall thickness of the insulated gate layer and of the insulating material layer to prevent the first dopant from being implanted in a central stripe of the uncovered surface stripes, to form pairs of heavily doped elongated source regions of the first conductivity type which extend along the two elongated edges of each elongated window and which are separated by the central stripe; implanting a low dose of a second dopant of a second conductivity type along two directions which lie in the plane, and which are substantially symmetrically tilted of a second prescribed angle with respect to the orthogonal direction, to form doped regions of the second conductivity type each comprising two lightly doped elongated channel regions extending under the two elongated edges of each elongated window; implanting a high dose of a third dopant of the second conductivity type substantially along the orthogonal direction, the insulating material layer acting as a mask, to form heavily doped regions substantially aligned with the edges of the elongated windows.
Abstract:
A low frequency amplifier comprising, in series, a first input stage, an intermediate amplifying stage and a final stage. The intermediate amplifying stage comprises a capacitor which is discharged when the amplifier is disabled, and is charged to a predetermined bias value when the amplifier is operative. To prevent voltage peaks at the output of the amplifier during the transient interval between the disabled and operating condition of the amplifier, a second input stage is provided which is only turned on during the transient interval, and is connected to the capacitor to detect its voltage and charge it. During the transient interval, the final stage is disabled. Upon the capacitor reaching the predetermined charge value, the second input stage practically turns itself off, and is then disabled; and, at the same time, the first input stage and the final stage are enabled to turn on the amplifier.
Abstract:
An output stage for integrated circuits, particularly for electronic memories, including: an input section that is adapted to acquire an input datum; a latch circuit having a first output and a second output and connected to the input section; a first inverter connected to the second output; a second inverter connected to the first output; a third inverter connected to the output of the second inverter; a grounding transistor driven by the second output of the latch circuit and adapted to connect the output of the third inverter to the ground; and a push-pull stage driven by the output of the first and third inverters. The output stage according to the present invention furthermore includes: a shorting transistor adapted to connect the output of the first inverter to the output of the second inverter; a first enabling transistor interposed between the first inverter and the first output of the latch circuit; a second enabling transistor interposed between the second inverter and the second output of the latch circuit; and a section for charging and discharging the push-pull stage, which is adapted to rapidly discharge the gate of the first transistor of the push-pull stage and to charge the gate of the second transistor of the push-pull stage during their operation.
Abstract:
A bandgap type, thermal protection circuit for an integrated circuit does not require the use of a comparator and a voltage divider of the bandgap voltage. By contrast, the simplified thermal protection circuit of the invention utilizes a first transistor for mirroring the current flowing through the bandgap circuit through a second transistor that is functionally connected between the output node and ground. The control terminal of the second transistor is connected to a temperature dependent voltage derived from the bandgap circuit. The crossing point between the characteristic of such a temperature dependent voltage and of the VBE characteristic of the second transistor versus temperature determine the required transition on the output node.