Abstract:
Provided herein are oscillator paths between an oscillator and mixers. In an embodiment, the oscillator paths include a first path between an oscillator and a first mixer and a second path between the oscillator and the second mixer, in which the first path is enabled in a first state (e.g., a low band state) and the second path is enabled in a second state (e.g., a high band state). The first path can include a radio frequency divider configured to receive a signal having the oscillator frequency and to divide the signal in frequency by a positive odd integer divisor greater than one, and a duty cycle correction circuit configured to receive an output from the radio frequency divider and provide an output having a duty cycle that is closer to 50% than the output from the divider. Such separate oscillator paths can, for example, enhance receiver performance.
Abstract:
A system is described for forming an estimate of an unwanted signal component that may be formed as a result of non-linearities in a system. The estimate is used to form a cancellation signal which is added to an input signal to reduce the influence of the unwanted component.
Abstract:
A control circuit is provided for controlling the voltage at the gate terminal of a field effect transistor acting as a switch. The voltage, at for example, the source terminal of the transistor can be provided to a low pass filter and is then voltage translated to provide the gate signal. The filtering can be arranged so as to compensate for the effect of parasitic capacitances within the transistor, thereby linearizing its frequency response. The voltage translation can help to limit voltage differences between the gate and channel of the transistor. This can be significant as relatively fast transistors, as might be used in microwave circuits, may fail with relatively modest voltages at their gates.
Abstract:
An oscillator for a signal isolator system includes a capacitor and an inductor connected in parallel, two pairs of cross-coupled switches and a control switch. The capacitor, the inductor and the cross-coupled switches form an oscillator. The control switch controls operation of the oscillator between an ON state and an OFF state in response to a data signal to be communicated across an isolation barrier. The inductor may be formed from a winding of an isolation transformer, which reduces component count as compared to a system that provides a separate inductor. Other embodiments may include a current-supplying kickstart circuit and a shorting transistor that can speed transition between the ON and OFF states.
Abstract:
A timer circuit is provided comprising: a resistor; a programmable gain circuit coupled to amplify the reference level based upon a resistor and a selected gain; a detection circuit coupled to identify the amplified reference level based upon a resistor; a selection circuit configured to select the gain based at least in part upon the identified amplified reference level based upon a resistor; a comparator circuit configured to transition between providing a signal having a first value and providing a signal having a second value based at least in part upon comparisons of a reactive circuit element excitation level with the amplified reference level based upon a resistor and with a second reference level; and reactive circuit element excitation circuit configured to reverse excitation of the reactive circuit element in response to the comparator circuit transitioning between providing the signal having the first value and providing the signal having the second value.
Abstract:
A device to determine a state of a battery is disclosed. One or more transistors provide a resistance between first and second nodes. The one or more transistors are configured to conduct a supply current from a battery between the first node and the second node. A measurement circuit measures the voltage generated between the first node and the second node. The measurement circuit further measures the supply voltage. A calculation circuit generates an estimate of the supply current based on the voltage measured between the first node and the second node and the resistance of the one or more transistors. The calculation circuit generates an estimate of the state of charge of the battery based on the measured supply voltage and the estimate of the supply current.
Abstract:
Early effects are intrinsically present in bipolar junction transistors (BJTs). Described are examples of complimentary to absolute temperature (CTAT) and proportional to absolute temperature (PTAT) cells that reduce errors associated with the Early effects that would otherwise be present.
Abstract:
Remote evaluation, e.g., web-based evaluation, lowers the evaluation barrier by allowing an engineer to gain experience with an integrated circuit (IC) using a client (e.g. a web browser) on a remote computer (e.g., a machine remote from the IC being evaluated but local to the engineer) to activate a test set-up that is maintained at a location that is far away from the engineer.
Abstract:
An apparatus comprises a switching circuit, an error amplifier circuit, a current threshold circuit, and an over-current detection circuit. The switching circuit provides a switching duty cycle that includes a charge portion and a discharge portion. The error amplifier circuit generates an error signal representative of a difference between a target voltage value and a voltage at an output of the voltage regulator circuit. The switching circuit adjusts the switching duty cycle to regulate the voltage at the output using the error signal and a reference waveform signal. The current threshold circuit generates an adaptive peak current limit threshold. The over-current detection circuit generates an over-current signal when the reference waveform signal satisfies the adaptive peak current limit threshold during the charging portion of the switching cycle. The switching circuit interrupts one or more switching cycles when the reference waveform signal satisfies the adaptive peak current limit threshold.
Abstract:
Actuators are used to move a variety of objects to desired positions. It is generally desirable that they can do this quickly without exhibiting overshoot or ringing. Some actuators are required to respond very quickly and examples of these are voice coil drivers used to move lenses in autofocus cameras provided in everyday devices such as smart phones and tablets. A rapid two step controller scheme had already been disclosed by Analog Devices Inc. Whilst the scheme works well, it can only be used reliably if the resonant frequency of the actuator is known to within 2 or 3%. The inventors have discovered that the resonant frequency of an actuator unexpectedly changes as a function of position. This disclosure provides ways of modifying the control scheme to cope with changes in resonant frequency.