Abstract:
The disclosed subject matter includes devices and methods relating to anode assemblies and/or X-ray assemblies. In some aspects, a method of forming an X-ray assembly may include providing an anode base formed of a first material and including a first end. The method may include depositing a second material different from the first material over a first surface of the anode base to form a coated portion of the anode base. The coated portion may be configured such that some backscattered electrons do not travel beyond the coated portion.
Abstract:
An X-ray emitting target including a diamond substrate, a first layer disposed on the diamond substrate and including a first metal, and a second layer disposed on the first layer and including a second metal whose atomic number is 42 or more and which has a thermal conductivity higher than that of the first metal. Carbide of the first metal is present at a boundary between the diamond substrate and the first layer. The target is prevented from overheating, so that output variation due to rising temperature is suppressed. Thus it is possible to emit stable and high output X-rays.
Abstract:
A transmissive target includes a target layer configured to include target metal and generate X-ray when receiving electrons and a substrate configured to support the target layer and include carbon as a main component. A carbide region including carbide of the target metal and a non-carbide region including the target metal are disposed in a mixed manner on a boundary surface between the substrate and the target layer on a target layer side.
Abstract:
A x-ray tube comprising an anode sealed to a flexible coupling. The flexible coupling can allow the anode to deflect or tilt in various directions to allow an electron beam to impinge upon various selected regions of an anode target.A method of utilizing different regions of an x-ray tube target by tilting or deflecting an x-ray tube anode to cause an electron beam to impinge on a selected region of the target.
Abstract:
According to one embodiment, a photon counting CT apparatus includes an X-ray source, a photon counting CT detector, and a calibration unit. The X-ray source includes a cathode configured to generate electrons and an anode including a plurality of targets configured to generate a plurality of characteristic X-rays having different energies. The photon counting CT detector detects X-ray photons generated by the X-ray source. The calibration unit calibrates the gain of the photon counting CT detector based on the correspondence relationship between the photon energies of the plurality of characteristic X-rays and outputs from the photon counting CT detector.
Abstract:
This disclosure presents systems for x-ray illumination that have an x-ray brightness several orders of magnitude greater than existing x-ray technologies. These may therefore useful for applications such as trace element detection or for micro-focus fluorescence analysis.The higher brightness is achieved in part by using designs for x-ray targets that comprise a number of microstructures of one or more selected x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment of the targets with higher electron density or higher energy electrons, which leads to greater x-ray flux.The high brightness/high flux x-ray source may then be coupled to an x-ray optical system, which can collect and focus the high flux x-rays to spots that can be as small as one micron, leading to high flux density.
Abstract:
A method (100) creates a braze joint (58) between an anode plate (52) and a piece of graphite (56) of an x-ray tube (38). The method (100) includes receiving (102) the anode plate (52) and the piece of graphite (56). A barrier layer (66) and a braze layer (62) are arranged (104, 106, 108) between the anode plate (52) and the piece of graphite (56), where the barrier layer (66) is between the piece of graphite (56) and the brazing layer (62). The barrier layer (66) is heated (110) with the braze layer (62) to create the braze joint (58) between the anode plate (52) and the piece of graphite (56).
Abstract:
An X-ray generation device is provided with an electron gun unit for emitting an electron beam, and a target unit having a substrate comprised of diamond, and a target body comprised of a material for generating X-rays with incidence of the electron beam thereto and buried in close contact in the substrate. An outer diameter of the target body is in the range of 0.05 to 1 μm. An outer diameter of an irradiation field of the electron beam on the target unit is in the range of 1.1 to 2.5 times the outer diameter of the target body. The X-ray generation device irradiates the target body with the electron beam so that the target body is included in the irradiation field, thereby to generate X-rays from the target body.
Abstract:
Provided is an X-ray tube. The X-ray tube includes an electrode on which an electron beam impacts to generate an X-ray, and a window on which the electrode is disposed and through which the X-ray generated from the electrode is transmitted. The electrode includes a channel passing through the electrode, and the electron beam is provided into the channel to generate the X-ray.
Abstract:
A transmissive target includes a target layer configured to include target metal and generate X-ray when receiving electrons and a substrate configured to support the target layer and include carbon as a main component. A carbide region including carbide of the target metal and a non-carbide region including the target metal are disposed in a mixed manner on a boundary surface between the substrate and the target layer on a target layer side.