Abstract:
A system and method of controlling transmission power during the establishment of a channel in a CDMA communication system utilize the transmission of a short code from a subscriber unit to a base station during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional spreading code. The ramp-up starts from a power level that is guaranteed to be lower than the required power level for detection by the base station. The subscriber unit quickly increases transmission power while repeatedly transmitting the short code until the signal is detected by the base station. Once the base station detects the short code, it sends an indication to the subscriber unit to cease increasing transmission power. The use of short codes limits power overshoot and interference to other subscriber stations and permits the base station to quickly synchronize to the spreading code used by the subscriber unit.
Abstract:
Disclosed are methods and apparatus for use in a synchronous CDMA communications system (10) that employs orthogonal pn spreading codes. The methods are intended for synchronizing transmissions from a subscriber unit (SU 14) to a radio base unit (RBU 12), and include the steps of: (a) transmitting individual ones of a plurality of bursts from the SU to the RBU, each burst being transmitted with a different pn spreading code timing alignment; (b) receiving individual ones of the plurality of bursts with the RBU and determining a power estimate of each received burst; and (c) in response to a determined power estimate of one of the bursts exceeding a threshold, sending a message from the RBU to the SU. The message indicates that the SU is to use for subsequent transmissions the pn spreading code timing alignment that was employed when transmitting the burst that exceeded the threshold. In a preferred embodiment of this invention the step of transmitting transmits an indication of the pn spreading code timing alignment used when transmitting a given one of the bursts. Each burst is transmitted with a pn spreading code timing alignment that differs by 1/2 chip from a previous pn spreading code timing alignment.
Abstract:
A technique for spread-spectrum communication which uses more than one mode and more than one frequency band. Selectable modes include narrowband mode and spread-spectrum mode, or cellular mode and microcellular mode. Selectable frequency bands include both licensed and unlicensed frequency bands, particularly frequency bands including the 902-928 MHz, 1850-1990 MHz, and 2.4-2.4835 GHz frequency bands. Spread-spectrum communication channels are 10 MHz or less in width. The frequency band onto which spread-spectrum signals are encoded may be changed upon a change in environment or other control trigger, such as establishment or de-establishment of communication with a private access network.
Abstract:
A multiple access, spread-spectrum communication system processes a plurality of information signals received by a Radio Carrier Station (RCS) over telecommunication lines for simultaneous transmission over a radio frequency (RF) channel as a code-division-multiplexed (CDM) signal to a group of Subscriber Units (SUs). The RCS receives a call request signal that corresponds to a telecommunication line information signal, and a user identification signal that identifies a user to receive the call. The RCS includes a plurality of Code Division Multiple Access (CDMA) modems, one of which provides a global pilot code signal. The modems provide message code signals synchronized to the global pilot signal. Each modem combines an information signal with a message code signal to provide a CDM processed signal. The RCS includes a system channel controller is coupled to receive a remote call. An RF transmitter is connected to all of the modems to combine the CDM processed signals with the global pilot code signal to generate a CDM signal. The RF transmitter also modulates a carrier signal with the CDM signal and transmits the modulated carrier signal through an RF communication channel to the SUs. Each SU includes a CDMA modem which is also synchronized to the global pilot signal. The CDMA modem despreads the CDM signal and provides a despread information signal to the user. The system includes a closed loop power control system for maintaining a minimum system transmit power level for the RCS and the SUs, and system capacity management for maintaining a maximum number of active SUs for improved system performance.
Abstract:
Methods for generating code sequences that have rapid acquisition properties and apparatus which implement the methods by processing spreading codes on in-phase and quadrature channels. A first method combines two or more short codes to produce a long code. This method may use many types of code sequences, one or more of which are rapid acquisition sequences of length L that have average acquisition phase searches r=log2L. Two or more separate code sequences are transmitted over the complex channels. If the sequences have different phases, an acquisition may be done by acquisition circuits in parallel over the different code sequences when the relative phase shift between the two or more code channels is known. When the received length L codes or the length L correlation codes used to find the phase of the received codes have a mutual phase delay of L/2, the average number of tests to find the code phase of the received code is L/4. The codes sent on each channel may be the same code, with the code phase in one channel being delayed with respect to the other channel, or they may be different code sequences.
Abstract:
A technique for spread-spectrum communication which uses more than one mode and more than one frequency band. Selectable modes include narrowband mode and spread-spectrum mode, or cellular mode and microcellular mode. Selectable frequency bands include both licensed and unlicensed frequency bands, particularly frequency bands including the 902-928 MHz, 1850-1990 MHz, and 2.4-2.4835 GHz frequency bands. Spread-spectrum communication channels are 10 MHz or less in width. The frequency band onto which spread-spectrum signals are encoded may be changed upon a change in environment or other control trigger, such as establishment or de-establishment of communication with a private access network. A multi-band transmitter comprises a single frequency synthesizer and a frequency source (e.g., a local oscillator), coupled to a selectable band pass filter. A multi-band receiver capable of monitoring one or more frequency bands comprises bank of bandpass filters and a demodulator comprising a single frequency synthesizer and a frequency source.
Abstract:
A rake-type CDMA base station receiver equipment, including a plurality of correlators each having a received signal as its input, a plurality of diversity combiners for respective receiver branches, and a measurer for measuring the quality of the received signal. To reduce the number of correlators and diversity combiners, the receiver equipment further includes switches for switching the correlators to the different combiners, and controllers for controlling the switches on the basis of data sent from the measurer for measuring the quality of the received signal or on the basis of the capacity loading of the base station receiver equipment.
Abstract:
A method for operating an adapting device includes selecting a first access mode out of a plurality of access modes for a first transmission between a first communications device and a second communications device, wherein the selection of the first access mode is made in accordance with an access mode criterion, and at least one of communications system information, and user equipment information, and determining sparse code multiple access (SCMA) parameters from the first access mode in accordance with a SCMA parameter mapping rule. The method also includes providing information about the first access mode to at least one of the first communications device and the second communications device.
Abstract:
A multi-bit HARQ feedback is transmitted by a receiver to a transmitter. The multi-bit feedback is a function of a level of convergence reached by a decoder when the previously transmitted coded data bits bit were decoded. The transmitter is configured to select a set of coded data bits for a retransmission as a function of the multi-bit feedback. In some embodiments, different redundancy versions of the coded data bits may be selected as a function of the multi-bit feedback. In other embodiments, a bit puncturing or bit repetition pattern may be selected as a function of the multi-bit feedback.
Abstract:
A multi-bit HARQ feedback is transmitted by a receiver to a transmitter. The multi-bit feedback is a function of a level of convergence reached by a decoder when the previously transmitted coded data bits bit were decoded. The transmitter is configured to select a set of coded data bits for a retransmission as a function of the multi-bit feedback. In some embodiments, different redundancy versions of the coded data bits may be selected as a function of the multi-bit feedback. In other embodiments, a bit puncturing or bit repetition pattern may be selected as a function of the multi-bit feedback.