Abstract:
An electron emission apparatus can effectively suppress the adverse effect of electric discharges that can take place between the oppositely disposed electrodes of the apparatus to which a high voltage is applied by dividing the electrode adapted to have a higher electric potential into segments in order to reduce the electrostatic capacitance between the electrodes. In the case of an electron emission apparatus comprising electron-emitting devices, said plurality of electron-emitting devices are disposed such that the direction along which those that can be driven simultaneously are arranged is not parallel with the direction along which the electrode is divided into the electrode segments in order to reduce the variable range of the electric current that can flow in the segments.
Abstract:
An object of the present invention is to prevent a device portion from being electrostatically charged with the use of the high resistivity film, and at the same time prevent a leak current passing the device portion due to an existing high resistivity film, in an electron source with the use of a surface-conduction electron-emitting device. This process for manufacturing the electron-emitting device comprises the steps of: forming an electroconductive thin film 4 astride device electrodes; forming the high resistivity film 7 in a region except the electroconductive thin film 4 and a perimeter thereof; subjecting the electroconductive thin film 4 to forming processing, to form a fissure 5 therein; and depositing a carbon film 6 inside the fissure 5 and in a region reaching the high resistivity film 7 from the edge of the fissure 5, by applying voltage between device electrodes 2 and 3 under an atmosphere containing a carbon compound.
Abstract:
A probe for applying a voltage to lines provided on a substrate comprises (a) a conductive sheet, the conductive sheet including a mesh sheet in which linear members are woven into a mesh and a conductive material which coats the mesh sheet, (b) an elastic member for pressing the conductive sheet against the lines, and (c) a holding member for holding the conductive sheet and the elastic member together. The probe has improved electrical connectivity and durability, and achieves a reduction in size and facilitation of operations of an apparatus for manufacturing an electron source.
Abstract:
In a method of manufacturing an electron source, a plurality of row wirings, a plurality of column wirings, and a plurality of pairs of conductive films arranged in a matrix by the plurality of row and column wirings, are formed on a substrate, each pair of conductive films being formed through a gap. After then, a row wiring is selected among the plurality of row wirings in the presence of an activation substance source, and a substantially same constant voltage is applied to each of a plurality of pairs of conductive films connected to the selected row wiring, while a predetermined voltage is applied to at least specific pairs of conductive films among a plurality of pairs of conductive films connected to unselected row wirings of the plurality of row wirings.
Abstract:
To reuse glass used in a flat panel display, processing suitable for global environment such as processing of separating a lead component must be realized. A disassembly processing method for a flat panel display having a structure in which a face plate and rear plate mainly containing glass are airtightly joined via a frame with frit glass is characterized by including the step of separating the face plate and rear plate joined with the frit glass. The separation step is characterized by separating the face plate and rear plate by cutting, dissolution, or melting.
Abstract:
A covering layer for insulating between column wirings and device electrodes is formed in a region including each cross point of the column wirings and row wirings and under the column wirings. Thus, when an electron source plate in which a large number of electron-emitting devices are wired in passive matrix is formed, a defect resulting from an interaction between the device electrodes and the column wirings at the time of wiring formation is reduced to improve insulation reliability. Therefore, a high quality image is obtained by a large size and higher density pixel arrangement in an image-forming apparatus using the electron source plate.
Abstract:
An image formation apparatus is disclosed which includes, within an enclosure configured by a pair of substrates placed face to face and an external frame placed between the substrates, an electron source placed on one of the pair of substrates, an image formation material placed on the other substrate, and spacers placed between the substrates, characterized in that the spacers and the external frame is conductive and device is provided for electrically connecting the spacers and the external frame so that the equipotential surfaces between the spacers and the external frame are quasi-parallel when driven.
Abstract:
In an electron source manufacturing apparatus, the quantity of heat generated from an electron source substrate is measured. A temperature of a support member for the electron source substrate is controlled based on the measured quantity of heat generated. A variation in performances of electron source substrates is suppressed, which increase their life.
Abstract:
A method of manufacturing an electron-emitting device has a step of forming a pair of conductors on a substrate, the conductors being spaced from each other, and an activation process of depositing carbon or carbon compound on at least one side of the pair of conductors in an atmosphere of carbon compound gas. The activation process includes a plurality of processes of two or more stages including a first process and a second process. The first process is executed in an atmosphere of the carbon compound gas having a partial pressure higher than a partial pressure of the gas in the second process, with the second process being the last activation process.
Abstract:
A spacer, which is an atmospheric pressure resistant structure for a vacuum container, can be easily assembled, and the manufacturing costs that accompany the installation of the spacer are reduced. A rear plate, which includes a substrate on which electron-emitting devices are mounted, is located opposite a face plate that is irradiated by electrons emitted by the electron-emitting devices, so that together these two units constitute one part of the vacuum container. A spacer is positioned as an atmospheric pressure resistant structure in the vacuum container. Blocks are bonded to both ends of the spacer, and with these blocks, the spacer is self-supported. Both ends of the spacer are tapered, and are used to reduce the stress that is imposed on the bottoms of the spacer and the blocks by the rear plate and the face plate while air is discharged from the vacuum container.