Abstract:
A hardware secure element includes a processing unit and a receiver circuit configured to receive data comprising a command field and a parameter field adapted to contain a plurality of parameters. The hardware secure element also includes at least one hardware parameter check module configured to receive at an input a parameter to be processed selected from the plurality of parameters, and to process the parameter to be processed to verify whether the parameter has given characteristics. The hardware parameter check module has associated one or more look-up tables configured to receive at an input the command field and a parameter index identifying the parameter to be processed by the hardware parameter check module, and to determine for the command field and the parameter index a configuration data element.
Abstract:
An electrostatically actuated oscillating structure includes a first stator subregion, a second stator subregion, a first rotor subregion and a second rotor subregion. Torsional elastic elements mounted to the first and second rotor subregions define an axis of rotation. A mobile element is coupled to the torsional elastic elements. The stator subregions are electrostatically coupled to respective regions of actuation on the mobile element. The stator subregions exhibit an element of structural asymmetry such that the electrostatic coupling surface between the first stator subregion and the first actuation region differs from the electrostatic coupling surface between the second stator subregion and the second actuation region.
Abstract:
An optoelectronic device may include a package having a component for sending/receiving optical signals along a first direction, and a chip of semiconductor material housed within the package. The chip may have a main surface and a portion exposed on the main surface for sending/receiving the optical signals along a second direction different from the first direction. The optoelectronic device may further include a component for deflecting the optical signals between the first direction and the second direction, the component being mounted on the main surface.
Abstract:
A method of PWM regulating a motor through a half-bridge drive stage includes sampling the motor current to obtain sampled values during driving intervals or during current decay intervals, and comparing a last sampled value with a current threshold. The motor is coupled in a slow decay electrical path for the duration of a current decay interval if the last sampled value does not exceed the current threshold. Otherwise the motor is coupled in a fast decay electrical path for a portion of the duration of the current decay interval, and is coupled in the slow decay electrical path for a remaining part of the duration of the same current decay interval.
Abstract:
An embodiment for realizing a power device with trench-gate structure integrated on a semiconductor substrate, and including etching the semiconductor substrate to make a first trench having first side walls and a first bottom; and further etching said semiconductor substrate to make a second trench inside the first trench, realized in a self-aligned way and below this first trench, the first trench and the second trench defining the trench-gate structure with a bird beak-like transition profile suitable for containing a gate region.
Abstract:
A method for simultaneous playback of audio tracks from digital transceiver devices, which are adapted to define a communication network. The digital devices store audio tracks to be played. One of the digital devices is actuated as a Master device (M) and the remaining N digital devices as Slave devices. The master device generates a pilot signal by selecting a pilot audio track to be played from among stored audio tracks and by adding a synchronization frequency (fS) to the pilot audio track, having an assigned value that falls out of the sound wave frequency range. The Slave devices receive a pilot portion of the pilot signal and extract the synchronization frequency and the received part of the pilot audio track. The slave devices use the pilot to identify a stored track to be played using the synchronization frequency as a sampling frequency.
Abstract:
An energy-scavenging interface receives an input signal from a transducer and supplies an output signal to a load. A switch is connected between the transducer and a reference node, and a diode is connected between the transducer and the load. A control circuit closes the switch for a time interval to permit energy storage in the transducer. A scale copy of a peak value of stored electric current is obtained. The switch is opened when the time interval elapses and the stored energy exceeds a threshold. The stored energy is then released to supply the load through the diode. The switch remains open as long as the value of current in the output signal exceeds the value of the scaled copy of the peak value.
Abstract:
Capacitance sensing circuits and methods are provided. The capacitance sensing circuit includes a capacitance-to-voltage converter configured to receive a signal from a capacitance to be sensed and to provide an output signal representative of the capacitance, an output chopper configured to convert the output signal of the capacitance-to-voltage converter to a sensed voltage representative of the capacitance to be sensed, an analog accumulator configured to accumulate sensed voltages during an accumulation period of NA sensing cycles and to provide an accumulated analog value, an amplifier configured to amplify the accumulated analog value, and an analog-to-digital converter configured to convert the amplified accumulated analog value to a digital value representative of the capacitance to be sensed. The analog accumulator may include a low pass filter having a frequency response to filter wideband noise.
Abstract:
A diagnostic device includes a photodiode (2) formed by a body (10) of semiconductor material having a first surface (6a), an integrated optical structure (30) on the first surface and having a second surface (34a), and at least one detection region (50) on the second surface. The at least one detection region includes at least one receptor (52) that binds to a corresponding target molecule (MB) that can be mated with a corresponding marker (54), which, when excited by radiation having a first wavelength (λe), emits radiation having a second wavelength (λf) that can be detected by the photodiode. The integrated optical structure includes at least a first layer (34, 62) of a first material having a first refractive index (n1). The first layer has a thickness substantially equal to an integer and odd multiple of one fourth of the first wavelength (λe) divided by the first refractive index.
Abstract:
A control device controls a switching circuit of a DC-DC converter. The switching circuit includes a half-bridge with at least first and second switches connected between an input voltage and a reference voltage. The converter comprises a transformer with a primary coupled with the center point of the half-bridge and a secondary coupled with a load. The control device comprises an error detector configured to determine an error signal representing a difference between a first signal representative of the voltage across the load and a first reference signal and a frequency controller configured to increase the switching frequency of the half-bridge when the error signal is kept below a second signal.