Abstract:
The subject of the invention is a door drive for a swing door of a passenger transport vehicle, comprising a rotary post, which is arranged at the vehicle, with at least one pivot arm for arrangement at a door leaf, wherein a motor is arranged in the rotary post and is connected with the rotary post, wherein at least one planetary transmission stage is provided for stepping down the rotational speed of the motor and wherein the pinion cage of the at least one planetary transmission stage comprises a rotary element, particularly a pinion, which is fixable.
Abstract:
A driving mechanism is arranged such that at least a part is contained within a space corresponding to the external shape of a driving motor, that is, within a space corresponding to a distance in the radial direction of the driving motor. The driving mechanism comprises a pinion, a transmission gear, a ring gear that forms a fixed axis, and a carrier. The pinion is connected to a rotary shaft of the driving motor. The transmission gear has a disk gear portion that meshes with the pinion, and a sun gear portion that is located on the same side as the pinion with respect to the disk gear portion. The carrier has a planet gear and rotates with a drum.
Abstract:
A vehicle door driving apparatus includes a driving mechanism fixed to a vehicle door and including a motor and a drum rotationally driven by the motor. A rope member is wound around the drum and linked to the vehicle body, and rotation of the drum is transmitted to the vehicle body by the rope member to open and close the vehicle door. The driving mechanism includes: a first small-diameter gear linked to the rotary axis of the motor to rotate together with the rotary shaft of the motor; a transmission gear rotatable around the axis extending in the vehicle width direction; a sun gear rotatable around such axis; a ring gear disposed on the same axis as the sun gear; and a carrier having a planet gear engaging the sun gear and the ring gear, and linked to the drum so that the carrier rotates together with the drum.
Abstract:
A fast clutch mechanism for an industrial door is provided. A worm is connected to a motor shaft of the industrial door and meshes with a worm wheel which is rotatably mounted on an output shaft of a transmission box. The fast clutch mechanism includes: a clutch sleeve surrounding the output shaft and restricted to be slid axially on the shaft, one end of the sleeve being capable of engaging a corresponding surface of the worm wheel, while the other end having a ring portion extended outwardly; a rotation device including a rotation shaft and a rotation actuating device coupled with one end of the rotation shaft; bevel gear driving device which includes a primary bevel gear mounted on the rotation shaft and a secondary bevel gear engaging with the primary bevel gear; a differential device including a drive gear rotatable with the secondary bevel gear, two follower gears engaging with the drive gear, and two cam shift levers connecting respectively the two follower gears in an axial direction, the two cam shift levers resisting against the ring portion of the clutch sleeve so as to make the clutch sleeve slide between an engagement position and an disengagement position with the clutch assembly. The present invention has the advantage of realizing ease clutch operation on the ground, thus reducing potential dangers.
Abstract:
A locking mechanism (100) for use with a pneumatic cylinder/differential engine for a power-operated door including a locking rod (20), a plunger (24) associated with the locking rod (20) to cause extension and retraction of the locking rod (20) with respect to a door opening/closing gear (46), and a spring member (34) associated with the plunger (24) for maintaining the plunger (24) and the locking rod (20) in an extended position during a door closed position. An aperture (46a) is located through a sidewall portion of the gear hub (46b) which is capable of receiving an end (20a) of the locking rod (20) when the locking rod is in an extended position to lock the door in a door closed position. The invention also includes an emergency door opening mechanism enabling manual opening of the doors in case of an emergency.
Abstract:
The invention discloses a door closer capable of realizing self-control positioning, which comprises an elastic mechanism, wherein the elastic mechanism comprises a cylindrical housing, a piston component, a long spring and a pull rod, the piston component is built in the cylindrical housing and connected and fastened with one end of the pull rod, the pull rod is sheathed in the long spring, and the two end parts of the long spring respectively are in contact with a sealing lid of the piston component and the cylindrical housing; and the door closer further comprises a self-control positioning mechanism, the self-control positioning mechanism comprises a cylindrical outer sleeve, a control part and a locking part, the cylindrical outer sleeve is connected and fastened with the cylindrical housing, the control part is and the locking part are linked by a clutch and joined together while connecting, the locking part and the pull rod are linked by a clutch and clasped when locking, and the pull rod is provided with a series of grooves which can be clasped with the locking part. The invention has the following benefits: 1) the pull rod can be limited and positioned at any angle through the self-control positioning mechanism, thereby ensuring that a door leaf can be positioned arbitrarily and facilitating personnel circulation or cargo transportation and the like; and 2) the overall structure is reasonable and compact, the operation is convenient and easy, and the door closer is safe, practical and reliable, and further applicable to popularization and use in different occasions.
Abstract:
A system for moving a barrier protecting a restricted area. A stationary linear induction motor moves the barrier by applying a magnetic field from the linear induction motor to a reaction fin attached to the barrier. The reaction fin has a rectangular beam or protrusion forming a groove on each side, which is engaged with guide members to guide the barrier. Holes are evenly spaced along the length of the reaction fin. Magnetic sensors sense the holes during movement of the barrier to determine the speed, position and direction of the barrier. A locking mechanism engages a pin into any one of the holes to lock the barrier in a fixed location. A heater is disposed within the rectangular beams or protrusions of the reaction fin to melt ice in cold weather environments. The system is operated by a main control logic that receives input data from the electronic sensors and controls the linear induction motor, heater and locking mechanism.
Abstract:
A door drive for garage, garden, hall or factory doors, comprising a motor unit which comprises a drive motor and a motor output shaft, an output transmission, which on the input end can be connected with the motor output shaft and on the output end includes a transmission output shaft for driving a door moving element, in particular a door shaft, a release clutch for releasing the motor output shaft with respect to the door moving element as well as at least one damping element for damping drive shocks. The door drive is characterized in that the output transmission includes a transmission housing formed separate from the motor unit and together with the release clutch and the damping element forms a separate, modular drive attachment, which can be connected on the one hand to the motor unit and on the other hand to the door moving element.
Abstract:
The subject of the invention is a door drive for a swing door of a passenger transport vehicle, comprising a rotary post, which is arranged at the vehicle, with at least one pivot arm for arrangement at a door leaf, wherein a motor is arranged in the rotary post and is connected with the rotary post, wherein at least one planetary transmission stage is provided for stepping down the rotational speed of the motor and wherein the pinion cage of the at least one planetary transmission stage comprises a rotary element, particularly a pinion, which is fixable.
Abstract:
The invention concerns an electromechanical drive for a door or the like, with a motor and a transmission, which are connected with each other, wherein a drive gear in the form of a gear wheel or the like is present on a drive shaft of the transmission and cooperates with means for moving the door or the like, preferably in or on a guide rail. The drive has a modular design, and it has a compact power unit that can be used with different types of mounting units for different doors. In this regard, the power unit is equipped with a standard mounting bracket. In addition, different housings can be used for different areas of application.