Abstract:
The device for the transfer of a medium comprises a magazine having two main faces (17) of which one is adapted to cooperate with a container and a lateral face (18) extending between said main faces (17) as well as at least one sliding valve (3) housed in a cavity of said magazine (2) and in which there is formed a transfer duct (59) for said medium which issues on said face (17) adapted to cooperate with said container, said valve (3) having a closed position in which it sealingly isolates said duct (59) from said container and an open position in which said duct (59) is placed in communication with said container; said valve (3) comprising a valve member (40), an isolation sleeve (41) surrounding at least partially said valve member (40) as well as spring means (58) adapted to be compressed by said valve member (40) when said valve (3) is in its open position.
Abstract:
The invention concerns a filtration device comprising a manifold (3) providing fluid connection and mechanical connection comprising a clamping plate (4) movably mounted relative to the manifold (3) and adapted to compress at least one cassette (2) against the manifold (3), means for driving and guiding the clamping plate comprising a rod (6) extending between the manifold (3) and the plate (4), an actuator provided with a body and a member moveable relative to the body, which member is adapted to move through a predetermined travel between an extended position and a retracted position, the body being carried by the manifold (3), and the member carrying the rod (6) and driving the plate (4) via the rod (6) to a clamped position in which the member is in an intermediate retracted position in which it has moved through a shorter travel than the predetermined travel relative to its extended position.
Abstract:
This is a device for analyzing the quantity of organic compounds existing in a liquid, such as ultrapure water, at the outlet from a purification device including in series filter means (1), oxidation means (2) and polishing means (3), further including means for measuring the resistivity of water to determine the purity thereof, characterized in that it includes only one resistivity measuring cell (4) and in that the outlet points of said filter means (1) and said oxidation means (2) are connected to said resistivity measuring cell (4) by pipes provided with an analysis valve (6) and/or check valves (5) selectively enabling circulation of said liquid within them.
Abstract:
Device for the removal of ions from a polar liquid, e.g. water, comprising at least one compartment which comprises at least one inlet for an entering polar liquid flow and at least one outlet for an outgoing deionized liquid flow, in which said compartment an electrochemically regenerable ion-exchange material fills a zone through which zone a liquid flow is able to pass, the device being characterized in that it comprises one sensor of at least one dimensional change of the ion-exchange material. The sensor can comprise a photo-sensor or a sensor of mechanical stress. Preferably an apparatus connected to the sensor is able to analyze this dimensional change and to control the electric current. Method of using said device, whereby the electrical current applied to the device is controlled according to the expansion of the resin.
Abstract:
The device for spraying a reagent onto a support (81) adapted to retain microorganisms on a predetermined surface (82), comprises a spraying bell (3) as well as a nozzle (71) for emitting a jet of droplets of said reagent into a spraying chamber (34) comprised by said bell (3), said device also comprising an absorbent pad (5) mounted against said bell (3) transversely to said jet and closing said chamber (34) from the opposite side to said nozzle (71) with the exception of a circular central opening (51) provided in said pad (5), the diameter of said central opening (51) being adapted to enable a portion of said jet, when said device faces said support (81) and is at a predetermined distance therefrom, to pass through said central opening (51) over its entire area and be deposited on the whole of said predetermined surface (82) of said support (81).
Abstract:
Adsorbent filter media particularly suited for removal of biological contaminants in process liquids. A porous fixed bed of adsorbent material is formed, using only a granular adsorbent and a water-insoluble thermoplastic binder. The resulting composite filter allows for a higher amount of adsorbent with smaller adsorbent particles than conventional depth filters. Elimination of cellulose fiber, as well as the elimination of the thermoset binder, results in reduced contamination of the process liquid.
Abstract:
The biocontainer of the present invention provides a low cost, simple solution of many of the problems encountered during shipping, freezing and thawing of biopharmaceutical materials. The present invention enables a user to monitor the temperature profile of each biopharmaceutical container during the cryogenic process, so as to ensure the integrity of materials within each biocontainer by using a pre-installed and pre-sterilized temperature sensor. In some embodiments, the sensor assembly includes a wireless transmitter and is capable of transmitting information regarding the measured reading. In other embodiments, the sensor assembly includes a processing unit, which determines whether the temperature profile is acceptable. In a further embodiment, an indicator is included, such that the processing unit may indicate whether the biopharmaceutical material has been properly frozen. In other embodiments, the sensor assembly also includes a storage element, which is capable of storing various parameters during the freezing process.
Abstract:
The biocontainer of the present invention provides a low cost, simple solution of many of the problems encountered during shipping, freezing and thawing of biopharmaceutical materials. The present invention enables a user to monitor the temperature profile of each biopharmaceutical container during the cryogenic process, so as to ensure the integrity of materials within each biocontainer by using a pre-installed and pre-sterilized temperature sensor. In some embodiments, the sensor assembly includes a wireless transmitter and is capable of transmitting information regarding the measured reading. In other embodiments, the sensor assembly includes a processing unit, which determines whether the temperature profile is acceptable. In a further embodiment, an indicator is included, such that the processing unit may indicate whether the biopharmaceutical material has been properly frozen. In other embodiments, the sensor assembly also includes a storage element, which is capable of storing various parameters during the freezing process.
Abstract:
The present invention provides a filter element (500) having a radial permeate discharge path (550). The filter element generally includes a closed membrane structure (510) wrapped about a core (530) in reciprocating clockwise and counterclockwise directions, forming semicircular folds of membrane about the core. The semicircular folds of membrane have opposingly situated apical ends (560) separated by a gap. The interior of the closed membrane structure (510) defines a feed channel and the exterior of the closed membrane structure defines at least one permeate channel (522). A radial permeate discharge path (550) extends through the gap between the apical ends of the semicircular folds of membrane. Systems containing, and methods of using, filter elements including radial permeate discharge paths are also provided.