Abstract:
The present invention involves a system and method of making ferric chloride with reduced amounts of hydrochloric acid for water treatment. The method comprises preparing a reactant batch comprising ferric oxide and hydrochloric acid at a predetermined molar ratio. The method further includes mixing the reactant batch with an impeller rotating between about 60 and 150 revolutions per minute. The method further includes maintaining the reactant batch at a temperature between about 70° Fahrenheit and 180° Fahrenheit. The method forms a reaction product including ferric chloride and a reduced amount of hydrochloric acid.
Abstract:
A controlled-flow microwave instrument is disclosed for chemical synthesis using heterogeneous or highly viscous starting materials. The instrument includes a microwave source for generating electromagnetic radiation in the microwave frequencies, a microwave cavity in wave communication with the source for exposing compositions placed therein to microwave radiation, a microwave-transparent pressure resistant reaction vessel in the cavity, a source reservoir for starting materials and related compositions, a pump in communication with the source reservoir for pumping heterogeneous or highly viscous materials from the source reservoir to the reaction vessel, and a pressure-resistant valve between the pump and the reaction vessel for isolating the reaction vessel from the pump and the source reservoir during application of microwave energy to compositions in the vessel and from any resulting high pressure generated therein.
Abstract:
An apparatus and method for producing fatty acid alkyl esters from fatty acids derived from vegetable oils and animal fats with an alkaline solution dissolved in stoichiometric or near stoichiometric levels of a monoalkyl alcohol to form a mixture. The method further comprises emulsifying the mixture as a means to reach a completed chemical reaction state in a reactor section, wherein the oils or fats are transesterified into fatty acid alkyl esters. The transesterification occurs when the natural boundary surfaces of the immiscible mixture are enlarged by ultrasonic cavitation in the reaction section and the transesterification is performed at, or near atmospheric pressure. The method finally includes, after reaching the chemical reaction state, separating residues from the fatty acid alkyl ester in a gravitational phase separation section.
Abstract:
The present invention involves a system and method of making ferric chloride with reduced amounts of hydrochloric acid for water treatment. The method comprises preparing a reactant batch comprising ferric oxide and hydrochloric acid at a predetermined molar ratio. The method further includes mixing the reactant batch with an impeller rotating between about 60 and 150 revolutions per minute. The method further includes maintaining the reactant batch at a temperature between about 70null Fahrenheit and 180null Fahrenheit. The method forms a reaction product including ferric chloride and a reduced amount of hydrochloric acid.
Abstract:
An apparatus for preparing non-photosensitive fatty acid silver salt grains having a first feeding device for feeding a silver ion-containing solution, the solvent of which is water or a mixture of water and an organic solvent, to a closed mixing device; a second feeding device for feeding a solution of a fatty acid alkali metal salt, the solvent of which is water, an organic solvent, or a mixture of water and an organic solvent, to the closed mixing device; a third feeding device for feeding water, or a mixture of water and an organic solvent to the closed mixing device; and the closed mixing device for mixing matter fed from the first, second and third feeding devices, and discharging a liquid containing non-photosensitive fatty acid silver salt grains.
Abstract:
Complex fluidic micro electromechanical systems (MEMS) are incorporated into high purity chemical delivery systems, while maintaining valve sealing integrity, quality and performance of the system. In particular, fluidic MEMS systems are incorporated into high purity chemical delivery systems for semiconductor fabrication processes.
Abstract:
A method of producing a chemical reaction is provided. In the practice of one embodiment of the invention, the method includes the steps of providing a reaction vessel and reactants; placing at least one of the reactants in the reaction vessel; and allowing the reaction to proceed for a time interval. A volume increment of at least one of the reactants is withdrawn from the reaction vessel, and a volume increment of at least one of the reactants is added to the reaction vessel. The volume increment withdrawal/addition is repeated after successive time intervals until the reaction reaches a substantially steady state. In various alternative embodiments, the volume increment withdrawal can take place before, after, or contemporaneously with the volume increment addition.
Abstract:
Methods, systems, and sub-systems, for processing at least one chemical reaction, including one or more of constructing at least one chemical reaction query, searching at least one database using the at least one chemical reaction query, receiving at least one hit from the at least one database in response to the at least one chemical reaction query, selecting at least one desired hit from the at least one hit, creating the at least one chemical reaction using the at least one desired hit as a template, conducting the at least one chemical reaction using a reaction apparatus, and documenting at least one result of the at least one chemical reaction.
Abstract:
A multi-channel fluid dispenser includes a reservoir (106) with multiple internal chambers (844) with ports (850) to fill each chamber (844), a multi-channel liquid dispensing head, a plurality of fluid-delivery conduits, and support and positioning elements.
Abstract:
The maize gene dull1 (du1) of the present invention is a determinant of the structure of endosperm starch. Mutations of du1 affect the activity of at least two enzymes involved in starch biosynthesis, namely the starch synthase, SSII, and the starch branching enzyme, SBEIIa. Du1 codes for a predicted 1674 residue protein, and is expressed with a unique temporal pattern in endosperm but is undetectable in leaf or root. The size of the Du1 product and its expression pattern match precisely the known characteristics of maize SSII. The Du1 product contains two different repeated regions in its unique amino terminus, one of which is identical to a conserved segment of the starch debranching enzymes. The cDNA provided for in the present invention encodes SSII, and mutations within this gene affect multiple aspects of starch biogenesis by disrupting an enzme complex containing starch synthase(s), starch branching enzyme(s), and possibly starch debranching enzyme.