Abstract:
Disclosed herein are cell processing systems, devices, and methods thereof. A system for cell processing may comprise a plurality of instruments each independently configured to perform one or more cell processing operations upon a cartridge, and a robot capable of moving the cartridge between each of the plurality of instruments.
Abstract:
The present teachings relate to a method for monitoring and/or controlling a production process for manufacturing at least one industrial product at an industrial plant comprising at least one equipment by processing at least one input, the method comprising: receiving, via an input inter-face, real-time process data from the equipment; determining, via the computing unit, a subset of the real-time process data; providing as output data the subset of the real-time process data. The present teachings also relate to a system, a use, and a software product.
Abstract:
Disclosed herein are cell processing systems, devices, and methods thereof. A system for cell processing may comprise a plurality of instruments each independently configured to perform one or more cell processing operations upon a cartridge, and a robot capable of moving the cartridge between each of the plurality of instruments.
Abstract:
A device assembly for producing bioconjugates, in particular antibody-drug conjugates, including a conjugation unit for performing a bioconjugation reaction in a medium, a first filtration unit for separating precipitates and/or agglomerates, and a second filtration unit for performing an ultrafiltration and/or a diafiltration process. The first filtration unit is arranged in a flow path between the conjugation unit and the second filtration unit. The device assembly further includes a single control unit for controlling the transfer of medium from the conjugation unit through the first filtration unit to the second filtration unit and for controlling the ultrafiltration and/or diafiltration process.
Abstract:
A continuous reaction system (CRS) allows a method to prepare quantum dots (QDs) in a continuous manner with high precision. The CRS pumps a plurality of reagent fluids into one or more mixing sites to form a reaction fluid that is carried through a heating chamber at elevated pressures to carry out hydrothermal growth of the QDs. The pumps and heating chamber are controlled with a high precision by employing a detector downstream of the heating chamber to provide a signal that is dependent on the composition and size of the QDs. The signal is provided to a signal processor that provides a signal that control the flow rates and temperature parameters in the system. The QDs produced in this manner are consistent in size and composition and can be of a single semiconductor composition or can be core-shell QDs with a shell semiconductor formed on a core semiconductor.
Abstract:
The present invention provides a system for the production of a radiopharmaceutical including a radiosynthesis apparatus and a disposable cassette. The system of the invention includes a device that enables a position on the cassette to be freed for inclusion of an additional reagent vial. With the system of the invention a broader range of radiochemical syntheses can be envisaged using the cassette.
Abstract:
A light irradiation multi-sample parallel reaction device comprises: a base (1), a support disc (2) horizontally fixed and mounted above the base (1), a top disc (3) mounted above the support disc (2), a rotating disc (4) rotatably mounted below the support disc (2), and a plurality of reaction flasks (5), wherein a plurality of light transmission holes are circumferentially formed in the support disc (2); the plurality of reaction flasks (5) are placed on the light transmission holes in a one-to-one correspondence; a plurality of reaction flask through-holes for the reaction flasks (5) to pass through are formed in the top disc (3); a plurality of sets of stirrers (7) corresponding to the reaction flasks (5) are mounted between the top disc (3) and the support disc (2), and used for stirring liquids in the reaction flasks (5); the rotating disc (4) is arranged coaxially with the support disc (2); and a plurality of light sources (9) are arranged on an upper surface of the rotating disc (4). The device enables the irradiation intensity of light entering solutions to be consistent, improving experimental accuracy.
Abstract:
A continuous flow reactor (CFR) system for photoluminescent core shell nanoparticle manufacturing is provided. The CFR system includes a continuous flow reactor (CFR) module, a material supply module, a monitoring module and an automation module controlling the manufacturing process. The CFR module includes a plurality of flow reactors to perform core shell nanoparticle forming reactions, the flow reactors made at least partially of a light transparent material. The monitoring module includes photoluminescence detectors configured to detect radiation emitted from at least one of the core particle material and the core shell material to monitor the core shell nanoparticle forming reactions.
Abstract:
A continuous high capacity system for converting hydrocarbon containing post-consumer waste, post-industrial waste, renewable hydrocarbon feedstock into a biofuel, using a pug for blending less than 200 micron diameter particulate with a plasticizing agent; a sealing auger for forming an agglomerated material and sealing, a cutting device, a vacuum chamber to remove air from the cut material, an extruder forming an extrudate, a heating chamber or the heat exchanger to evolve at least one gas; a pressure sensor and temperature sensors in the heating chamber or the heat exchanger, a cooling chamber providing controlled pressure and controlled temperature cooling of the evolved gasses, wherein the cooling chamber liquefies sequentially at least 50 percent of the evolved gasses forming a liquid.
Abstract:
A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.