Abstract:
The invention is directed to systems, apparatus and kits for automated synthesis of a plurality of polynucleotides in an array of reaction chambers using a template-free polymerase. In some embodiments, adaptive elements and processes are provided to monitor and control disruption of the synthesis process and fluid movement by enzyme aggregation.
Abstract:
A well plate is formed with a well for holding a subject to be sucked by a suction nozzle on an inner bottom part and storing liquid and, a clearance forming member for forming a clearance to allow the liquid to flow in a state where a tip part of the suction nozzle is inserted into and held in contact with the well is provided in the well. According to the present invention, the clearance enabling the liquid to flow is formed even in the state where the tip part of the suction nozzle is inserted into and held in contact with the well in sucking the subject held in the well by the suction nozzle. The suction nozzle can suck the liquid around through the clearance and the subject held in the well is efficiently sucked through the suction port along the flow of the sucked liquid.
Abstract:
A microreactor array platform and method for sealing a reagent in microreactors of an array of microreactors are provided. The microreactor array platform includes an array of microreactors, and a sealing film having a first surface and an opposite second surface, the sealing film configured to movably seal the array of microreactors. The microreactor array platform also includes an injector for delivering a reagent into the array of microreactors via a fluid path between the array and the second surface of the sealing film, and an applicator for directing a sealing liquid against the first surface of the sealing film. The microreactor array platform further includes a system for creating a pressure differential between the reagent in the injector and a space between the array of microreactors and the second surface of the sealing film.
Abstract:
Described herein are automated, integrated microfluidic device comprising a chemical reaction chip comprising for performing chemical reaction, a microscale column integrated with the chip and configured for liquid flow from the column to at least one flow channel, and wherein the fluid flow into the column is controlled by on-chip valves; and comprising at least two on-chip valves for controlling fluid flow in the microfluidic device.
Abstract:
Disclosed herein are systems for monitoring chemical reactions. The systems can comprise a lighting device, a camera device for obtaining an image of the chemical reaction mixtures and an analyzer program to process data obtained from the image. Also disclosed are methods of monitoring the progress of chemical reactions using these systems.
Abstract:
Embodiments of the present invention are directed to automated-polymer-synthesis systems that include discrete reagent-solution-addition, wait-time, and reagent-solution-draining sub-systems which together significantly increase throughput and decrease sub-system idle time. The automated-polymer-synthesis systems that represent embodiments of the present invention additionally include switches at points in which carriers can be received from multiple input paths or output to multiple different output paths. The automated-polymer-synthesis systems that represent embodiments of the present invention generally include an input spur and output spur in addition to a main loop, allowing carriers containing only completed polymers to be removed and new carriers input, so that carriers traverse the automated-polymer-synthesis systems independently from one another.
Abstract:
Embodiments of the present invention include processing steps and subsystems, within automated-biopolymer-synthesis systems and within other automated systems for organic-chemistry-based processing, for removing reagent solutions and solvents from reaction chambers following various synthetic reaction steps and washing steps undertaken during biopolymer synthesis. Embodiments of the present invention employ any of various different types of liquid-absorbing materials to wick, or remove by capillary action, liquids from reaction chambers. Wicking-based methods and subcomponents of the present invention remove significantly greater fractions of solutions from reaction chambers than conventional methods and subsystems and, in addition, are mechanically simpler and produce fewer deleterious side effects than currently used methods and subsystems.
Abstract:
Disclosed herein are systems for monitoring chemical reactions. The systems can comprise a lighting device, a camera device for obtaining an image of the chemical reaction mixtures and an analyzer program to process data obtained from the image. Also disclosed are methods of monitoring the progress of chemical reactions using the these systems.
Abstract:
The present invention relates to methods for identifying analyte nucleic acids present in a sample comprising nucleic acid molecules, said method comprising the steps of: (a) providing a porous substrate, said substrate comprising a plurality of micro-channels, wherein said micro-channels have immobilized thereon a target molecule capable of binding to an analyte present in said sample; wherein said channels are further provided with analyte amplification components, a reporter system; and said sample; (b) amplifying analyte nucleic acid molecules present within said sample; and (c) allowing binding to take place between an amplified analyte nucleic acid obtained in step (b), said target molecule immobilized onto the channels of said substrate and said reporter system, wherein said reporter system allows detecting whether binding has occurred between said target molecule and said analyte nucleic acid. The present invention further relates to the use of said methods as well as kits for carrying out said methods.