Abstract:
A method may include providing a power supply voltage to a power supply input of a power amplifier by a charge pump power supply having a select input for selecting an operating mode of the charge pump power supply, such that in a first operating mode, the power supply voltage is equal to a first voltage, and such that in a second operating mode the power supply voltage is equal to a fraction of the first voltage; wherein the power amplifier has an audio input for receiving an audio input signal, and an audio output for providing the output signal, and generates the output signal based on the audio input signal. The method may also include selecting an operating mode of the charge pump power supply based on a magnitude of the power supply voltage and a magnitude of the output signal, such that the charge pump power supply operated in the operating mode having the lowest power supply voltage in which a difference between a magnitude of the power supply voltage and a magnitude of the output signal is more than the predetermined threshold voltage.
Abstract:
A method for producing an output voltage to a load may include, in a power stage comprising power converter having a power inductor, a plurality of switches arranged to sequentially operate in a plurality of switch configurations, and an output for producing the output voltage comprising a first output terminal and a second output terminal, controlling the linear amplifier to transfer electrical energy from the input source of the power stage to the load in accordance with one or more least significant bits of a digital input signal, and controlling the power converter in accordance with bits of the digital input signal other than the one or more least significant bits to sequentially apply switch configurations from the plurality of switch configurations to selectively activate or deactivate each of the plurality of switches in order to transfer electrical energy from the input source of the power stage to the load.
Abstract:
Audio amplification may be improved by controlling an audio amplifier based on the audio signal being amplified. For example, when the audio signal level increases or decreases, a boost voltage provided to an audio amplifier by a boost converter may also be increased or decreased. In another example, when the audio signal level decrease below a certain level, the audio amplifier may be switched from amplifying the audio signal with a boost converter input to amplifying the audio signal with a low voltage input. Control of the audio amplifier may be implemented in a digital boost converter controller coupled to the boost converter and/or the audio amplifier.
Abstract:
An audio device may include an electrical terminal for coupling a transducer device to the audio device and an audio circuit for generating an analog audio signal coupled to the electrical terminal. The audio circuit may include a pre-amplifier stage, an amplifier, and a gain selector. The pre-amplifier stage may apply a selectable gain to an audio input signal to generate a pre-amplified analog audio signal, wherein the pre-amplifier stage is powered by a first power supply. The amplifier may amplify the pre-amplified analog audio signal to generate the analog audio signal, wherein the amplifier is powered from a second power supply isolated from the first power supply. The gain selector may select the selectable gain based on a level of the first power supply, such that a difference between the second power supply and the analog audio signal is more than a predetermined headroom threshold voltage.
Abstract:
To correct for non-linearities in the response of a microphone as a function of sound pressure level incident upon the microphone, a displacement non-linearity function is applied to the signal path of the microphone, wherein the displacement non-linearity function is a function of the digital audio output signal and has a response modeling non-linearities of the displacement as a function of a sound pressure level incident upon the microphone.
Abstract:
A wireless earpiece may include a local memory for storing audio files that can be played back by the user. The wireless earpiece may fit entirely within the user's ear canal. Audio files, for example music files, may be loaded on the wireless earpiece by docking the wireless earpiece with a mobile device, which includes a larger memory storing the user's library of music files. The stored audio files may be received from a mobile device that were automatically selected from a library of music files by the mobile device without intervention from the user. To provide stereo sound, two wireless earpieces may be worn by the user and docked separately with the mobile device. Each of the two wireless earpieces may store a single channel of an audio file, which is separated by the mobile device during synchronization.
Abstract:
An interface for an array of digital microphones in an electronic device may include a head-end chip coupled to the digital microphones through a bus. The bus may be shared by each microphone of the array of microphones and be multiplexed to allow transmission of data from the microphones to the head-end chip and transmission of power from the head-end chip to the array of digital microphones. The head-end chip may perform signal processing on receive data from the array of digital microphones to create beamforming arrays. The array of microphones may include microphones with different characteristics to improve performance of the array of microphones.
Abstract:
A processing circuit may comprise an adaptive filter having a response generating an anti-noise signal from a reference microphone signal, a secondary path estimate filter modeling an electro-acoustic path of a source audio signal, a biasing portion that generates a scaled anti-noise signal by applying a scaling factor and the response of the secondary path estimate filter to the anti-noise signal, and a coefficient control block that shapes the response of the adaptive filter in conformity with the reference microphone signal and a modified playback corrected error signal by adapting the response of the adaptive filter to minimize ambient audio sounds in the error microphone signal, wherein the playback corrected error is based on a difference between the error microphone signal and the source audio signal and the modified playback corrected error signal is based on a difference between the playback corrected error signal and the scaled anti-noise signal.
Abstract:
An amplifier may include a plurality of stages, wherein each stage may have an amplifier stage output configured to generate an amplifier output signal and a transistor coupled at its gate terminal to the amplifier input and to the gate terminals of the transistors of the other amplifier stages. Each stage may be configured to periodically and cyclically operate in an amplifier mode in which the amplifier stage generates at its corresponding amplifier stage output a power-amplified version of a signal received at the amplifier input and a in reset mode in which the transistor of the stage operating in the reset mode has an electrical property thereof reset. At any given time, at least one amplifier stage is operating in the amplifier mode. The amplifier may be configured to output as an output signal one of the amplifier output signals corresponding to an amplifier stage operating in the amplifier mode.
Abstract:
A personal audio device including multiple output transducers for reproducing different frequency bands of a source audio signal, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each of the transducers from at least one microphone signal that measures the ambient audio to generate anti-noise signals. The anti-noise signals are generated by separate adaptive filters such that the anti-noise signals cause substantial cancellation of the ambient audio at their corresponding transducers. The use of separate adaptive filters provides low-latency operation, since a crossover is not needed to split the anti-noise into the appropriate frequency bands. The adaptive filters can be implemented or biased to generate anti-noise only in the frequency band corresponding to the particular adaptive filter. The anti-noise signals are combined with source audio of the appropriate frequency band to provide outputs for the corresponding transducers.