Abstract:
A device, system, and method uses a high power mode for a cellular connection. The method is performed at a device that is configured to establish a network connection to a network. The method includes detecting a number of at least one event that has occurred over a time period, the at least one event associated with operations used through the network connection, the at least one event indicative of a power to perform the operations that is greater than a predetermined power. When the number is at least a predetermined threshold, the method includes identifying the network connection as being in a high power state. The method includes activating settings when the network connection is in the high power state, the settings reducing a usage of the operations over the network connection.
Abstract:
This disclosure relates to techniques for securely performing connection release and network redirection in a wireless communication system. A wireless device may establish a radio resource control (RRC) connection with a first cell. The wireless device may receive a RRC connection release message from the first cell. The RRC connection release message may include an indication to redirect the wireless device to a second cell. The RRC connection with the first cell may be released. It may be determined whether security has been established with the first cell when the indication to redirect the wireless device to the second cell is received. A new serving cell may be selected based at least in part on whether security has been established with the first cell when the indication to redirect the wireless device to the second cell is received.
Abstract:
A device and method for transmitting user equipment capability information to a network. In a first mechanism, the device and method transmits carrier aggregation (CA) combinations supported by the user equipment in a priority order to the network. The priority order may be determined based on most recent camped bands and the neighbor bands of the most recent camped bands. In a second mechanism, the device and method transmits indicators corresponding to types of gapless measurements, where when an indicator is set to the user equipment being incapable of performing the type of gapless measurement, the capability message does not include individual indications for the bands for that type of measurement.
Abstract:
Methods, apparatuses and computer readable media are described that determine a connection state between a mobile wireless device and a wireless network upon detection of an interruption of a connection between the mobile wireless device and the wireless network. The mobile wireless device transmits an uplink resource allocation message to the wireless network, and when receiving no response to the uplink resource allocation message, transmits a random access message to the wireless network. When receiving no response from the wireless network to the random access message, the mobile wireless device executes a radio link failure procedure. In an embodiment, the uplink resource allocation message includes a unique identifier for an existing radio resource control connection between the mobile wireless device and the wireless network.
Abstract:
Various mechanisms for paging link-budget-limited (LBL) devices are disclosed, including: (1) transmitting paging message with non-conventional paging identifier; (2) transmitting paging message(s) with increased power; (3) repeating transmission of paging message to support combining at receiver. Various mechanisms for UE device to signal LBL status are disclosed, including, transmitting status flag or special value of DRX cycle to network node as part of tracking area update and/or attach request. The network node informs a base station of the device's LBL status as part of a paging message. (The network node may, e.g., assign an S-RNTI to the LBL device from a reserved subset of S-RNTI space.) The base station invokes a paging enhancement mechanism when paging an LBL device. Alternatively, the base station may page UE devices without knowledge of LBL status, e.g., by counting paging attempts for a given UE, and boosting power after the Nth paging attempt.
Abstract:
Methods and apparatus for the automated altering of wireless device states in response to detected connection behaviors. In one embodiment, a mobile device receives network parameters, some of which are incorrectly configured, from a base station (or access point). To ensure the proper behavior of the mobile device, the device reviews the network provided parameters to determine if one or more of the parameters has been set incorrectly. If so, the device locally alters its own settings to mitigate the incorrect operation associated with the incorrect network provided parameters. In second exemplary embodiment, a number of tolerances are utilized to ensure the proper operation of the mobile device while maintaining an active link. Upon violation of one or more of these tolerances, the device breaks the active link to the wireless network.
Abstract:
A base station associated with a wireless communication system is disclosed. The base station comprises one or more processors configured to generate a service configuration signal to be provided to a user equipment (UE) associated therewith. In some embodiments, the service configuration signal comprises an indication of one or more service configurations associated with a data transmission that are allowed to be transmitted by the UE during an INACTIVE state of the UE. In some embodiments, the one or more processors is further configured to provide the service configuration signal to the UE.
Abstract:
Apparatuses, systems, and methods for a user equipment device (UE) to perform methods for EPS fallback when initiating a voice call while camped on a 5G cell. The UE may camp on a 5G network by performing an IMS registration procedure/IMS SIP invite procedure with an IMS. The UE may initiate a voice call and determine that the voice call cannot be established over the 5G NR network. In response, the UE may perform a TAU procedure or an attachment procedure with a cell of a 4G network. The IMS may be transferred to the 4G network during TAU/attachment procedure. The UE may, in response to determining that it is barred from the 4G network, transition back to the 5G network and transmit, to the 5G NR network, a SIP cancel request to allow a context associated with the UE to be cleared from the IMS.
Abstract:
This disclosure relates to techniques for providing paging for a remote wireless device to a relay wireless device in a wireless communication system. A cellular base station may receive an indication from a relay wireless device of a relay link between the relay wireless device and a remote wireless device. The cellular base station may provide paging information for the remote wireless device to the relay wireless device based at least in part on the indication of the relay link between the relay wireless device and the remote wireless device.
Abstract:
This disclosure relates to methods and devices for mitigating overheating in a user equipment device (UE). The UE is configured to communicate over each of LTE and 5G NR and may be configured to communicate through 5G NR over each of a Sub-6 GHz and a millimeter Wave (mmW) frequency band. The UE is configured to establish an ENDC connection with an enB and one or more gNBs. The UE implements intelligent transmission modification and cell measurement adjustments to mitigate overheating and reduce battery drain.