Abstract:
A broadcast module includes a receiver for selecting the signal of a specific channel from the signals of a plurality of channels under control of a controller; a demodulator connected to the output of the receiver; a detector for detecting the signal-to-noise ratio of the signal selected by the receiver; and a comparator for comparing the signal-to-noise ratio detected by the detector with a predetermined level. The broadcast module can reduce the time required to specify a viewable cannel.
Abstract:
There is provided a stator in which a plurality of divided stators are annularly combined with each other, and each divided stator includes: a divided lamination iron core having teeth portion and a yoke portion, and constructed by laminating electromagnetic steel sheets divided by the teeth unit; insulating bodies provided at the divided lamination iron core; and concentrated winding wound around the divided lamination iron core through the insulating body. In this case, the divided lamination iron core is held by the insulating bodies and the concentrated winding.
Abstract:
A movable contact assembly includes a movable contact having a dome shape, a base sheet contacting an upper surface of the movable contact, a columnar portion provided on an upper surface of the base sheet, and a light guide sheet provided on an upper surface of the columnar portion. The light guide sheet has a light-receiving surface for introducing light into the light guide sheet, and allows the introduced light to be emitted from an upper surface of the light guide sheet. The base sheet includes a dome portion having a concave lower surface, and a flat portion connected with an outer edge of the dome portion. The columnar portion is positioned on the upper surface of the dome portion away from the outer edge of the dome portion of the base sheet. This movable contact assembly provides a switch illuminating its upper surface and being activated easily with a preferable feeling.
Abstract:
A radio communication device capable of lightening the influence of a frequency selective fading in the wide-band transmission of a single carrier thereby to prevent deterioration of error rate characteristics. In this device, an FFT unit (13) subjects a modulated signal inputted from a modulation unit (12) to a Fourier transformation. A pilot insertion unit (14) inserts a pilot symbol into a plurality of individual frequency components (1-N) of the modulated signal. Weight multiplication units (15-1, 15-2) multiply the individual frequency components (1-N) and the pilot symbols inserted into the individual frequency components (1-N), by weight coefficients (W11-W1N, W21-W2N) set at a weight coefficient setting unit (54). IFFT units (16-1, 16-2) subject the frequency components (1-N) to an inverse Fourier transformation, thereby to convert the frequency components (1-N) into time domains.
Abstract:
The fuel cell power generation system includes a fuel cell, a reformer, a carbon monoxide decreasing unit, a first raw material supply source, a first valve which is provided to a first raw material flow passage which is arranged between the first raw material supply sources and the reformer, a second valve which is provided downstream of the carbon monoxide decreasing unit, a second raw material supply source which supplies a raw material to the inside of a flow passage which is closed by the first valve and the second valve from a middle portion of the carbon monoxide decreasing unit or a downstream of the carbon monoxide decreasing unit, and a control unit which controls the first valve and the second valve, wherein the control unit, after the first valve and the second valve are closed, supplies the raw material fed from the second raw material supply source to the inside of the flow passage closed by the first valve and the second valve at the time of stopping the fuel cell power generation system.
Abstract:
An under-layer 2 comprising a coupling agent having a metal element to be transformed to an oxide is disposed on the surface of an inorganic oxide substrate 1, and a liquid containing micro-fine metal particles dispersed therein is coated on the under-layer 2 to form a micro-fine metal particle layer 3. Then, temperature is elevated to a metallizing temperature of the micro-fine metal particles, to form a thin metal film layer 5.
Abstract:
An active noise reducing device includes processing circuit includes a sine wave generator for generating a sine wave having a specific frequency, a cosine wave generator for generating a cosine wave having the same frequency as that of the sine wave, and two one-tap digital filters for processing the outputs from the generators. The processing circuit also has two coefficient updating sections, which output a sum of outputs from the digital filters. Updating sections update respective coefficients of the filters based on a sum of this output from the updating sections and respective inputs to the updating sections, and the respective outputs from the generators. The noise reducing device also has an adjusting circuit for adjusting the phase and amplitude of an output from the processing circuit, the adjusting circuit thus generates a control signal of opposite phase and equal in amplitude to original noise, so that random noise such as load noise can be reduced.
Abstract:
A ring oscillator comprises a first logic block having a first input connected to a specific point along a delay path, a first output and a second output and a second logic block having a first input connected to the first output of the first logic block, a second input connected to the second output of the first logic block, a third input connected to the end of the delay path and a first output connected to the beginning of the delay path. The first logic block is arranged to, in use, alternately switch its first output and second output from logical HIGH to logical LOW, and vice versa, every time a rising edge is input into its first input. The second logic block is arranged to, in use, alternately select its first input and its second input every time a rising edge is input into its third input. The pulse width of the signal output from the first output of the second logic block is indicative of the time necessary for one of a rising edge or a falling edge to propagate from the beginning of the delay path to the specific point along the delay path and the inverse pulse width of the signal output from the first output of the second logic block is indicative of the time necessary for the one of the rising edge or the falling edge respectively to propagate from specific point along the delay path to the end of the delay path.
Abstract:
A semiconductor device 10a includes a normal circuit 11 and a voltage fluctuation detection circuit 12a connected to a power supply 100 in common with the normal circuit 11. The voltage fluctuation detection circuit 12a includes an inverting amplifier 13a, a switching element 14, which is connected between input and output terminals of the inverting amplifier 13a, and a capacitance element 15 connected to the input terminal of the inverting amplifier 13a. After the normal circuit 11 and the switching element 14 are set to an operating state and ON state, respectively, when the switching element 14 is set to OFF state at an arbitrary time, charge corresponding to a power supply voltage Vc0 at that time accumulates in the capacitance element 15. After the normal circuit 11 is set to a suspended state, a potential VDD of the power supply 100 is set to an arbitrary value, and the inverting amplifier 13a compares the value of a power supply voltage Vc with the voltage value Vc0 corresponding to the charge held in the capacitance element 15.
Abstract:
A semiconductor chip is mounted on an upper surface of the heat sink plate that is provided with a plurality of heat releasing terminals on a lower surface of the heat releasing. A plurality of electric signal terminals are regularly disposed in a lattice-like manner around the heat sink plate. Lower end surfaces of the electric signal terminals and the heat releasing terminals are exposed from and sealed with a sealing resin. The heat sink plate is formed as an integrated body including a protruding portion that protrudes from a central portion of an upper surface and supports the semiconductor chip, a plurality of supporting portions that are positioned around a rear surface of the protruding portion so as to support the protruding portion and that are exposed at a rear surface of the sealing resin, the plurality of heat releasing terminals, and a thin-walled portion that is recessed from lower end surfaces of the supporting portions and the heat releasing terminals. Lower surfaces of the protruding portion and the thin-walled portion are covered with the sealing resin. The plurality of supporting portions are disposed so that they are continuous with the protruding portion and symmetrical to each other around the protruding portion. A degree of freedom is improved in board wiring below the heat sink plate in a land grid array type package.