Abstract:
Disclosed are an apparatus and method of detecting a temperature through a pyrometer in a non-contact manner, and an apparatus for processing a substrate using the apparatus, and more particularly, an apparatus and method of detecting a temperature, which precisely measures a temperature without any effect by humidity, and an apparatus for processing a substrate using the same. In an exemplary embodiment, an apparatus for detecting a temperature includes a humidity sensor configured to measure a humidity value, a temperature compensation database configured to store a temperature compensation value for each humidity value, and a pyrometer in which, assuming that a wavelength band including a transmittance limiting wavelength band as a wavelength band having a transmittance less than a first threshold value due to the humidity and a transmittance allowing wavelength band as a wavelength band having a transmittance more than a second threshold value due to the humidity is a wavelength band to be compensated, a non-contact temperature is calculated by adding a temperature compensation value corresponding to a humidity value detected by the humidity sensor to a temperature to be compensated calculated by measuring a wavelength intensity of the wavelength band to be compensated radiated from an object to be measured.
Abstract:
Disclosed is a calibrating apparatus which is adapted to remove a measurement deviation of a pyrometer, and more particularly, to an apparatus for calibrating a pyrometer, which calibrates a reference value so as to remove a deviation in a temperature measured in a pyrometer. The apparatus for calibrating a pyrometer includes a blackbody including a radiant space from which radiant energy is radiated, a body housing configured to receive the blackbody therein and including a light output wall having a light output port connected with the radiant space, a light output wall protecting cover comprising a transparent blocking plate disposed at a position opposite to the light output port so as to transmit a long wavelength of approximately 5 μm to approximately 20 μm may and configured to be coupled with the light output wall of the body housing, and a fixing member configured to fix the light output wall protecting cover to the light output wall of the body housing.
Abstract:
Disclosed is a calibrating apparatus which is adapted to remove a measurement deviation of a pyrometer, and more particularly, to an apparatus for calibrating a pyrometer, which calibrates a reference value so as to remove a deviation in a temperature measured in a pyrometer. The apparatus for calibrating a pyrometer includes a blackbody including a radiant space from which radiant energy is radiated, a body housing configured to receive the blackbody therein and including a light output wall having a light output port connected with the radiant space, a light output wall protecting cover configured to be coupled with the light output wall of the body housing so as to define a passage connecting the light output wall of the body housing and an outside environment, and a fixing member configured to fix the light output wall protecting cover to the light output wall of the body housing.
Abstract:
A heater block according to the present invention comprises a light-emitting lamp; a concave reflecting member that is placed opposite the lamp and has a concave reflecting surface at one surface faced with the lamp; a lens module that is inserted into the concave reflecting member and has at least one lens; and a flat reflecting member that is placed opposite the lens module. According to embodiments of the present invention, light emitted from the lamp is reflected by the concave reflecting member. Then, light and heat are collected from the reflected light by the flat reflecting member and the lens module and are irradiated on a substrate. That is, light having energy greater than a conventional manner is irradiated on the substrate to enhance the instant heating temperature and temperature increasing rate of substrate and to increase a heat-focusing area. Therefore, it has an advantage that the productivity of semiconductor or display device manufacture that requires a rapid thermal process is improved.
Abstract:
Provided are an apparatus for processing a substrate and a method for measuring a temperature of the substrate. The apparatus for processing the substrate includes a temperature measurement part and a light-transmitting shield plate. The temperature measurement part includes a light source, a light receiving part configured to receive reflected light reflected by the substrate or the shield plate among the light irradiated from the light source, and a radiant light emitted from the substrate to measure a quantity of the reflected light and an intensity of the radiant light and a temperature calculation part configured to calculate the temperature of the substrate, to which a contamination level of the shield plate is reflected, by using the quantity of the reflected light and the intensity of the radiant light.
Abstract:
A gas spraying apparatus according to the embodiment of the present invention includes a spray part disposed and aligned on one side outside a substrate in the width direction of the substrate, and having a plurality of nozzles for spraying gas toward the substrate, and a spray control unit for automatically controlling whether or not each of a plurality of nozzles sprays gas such that a gas density distribution type in the width direction of the substrate becomes a targeted gas density distribution type by the gas sprayed through the plurality of nozzles. Therefore, according to the embodiment of the present invention, it is easy to carry out the process with a plurality of types of process types or a plurality of types of gas density distribution types, and a time for adjusting the open or close operation of the plurality of nozzles can be shortened.
Abstract:
A substrate treatment method in accordance with an exemplary embodiment includes: heating a substrate, for a substrate treatment process, so that a temperature of the substrate reaches a target temperature; calculating the temperature of the substrate using a sensor located facing the substrate while heating the substrate; and controlling an operation of a heating part configured to heat the substrate according to the temperature calculated from the calculating the temperature, wherein the calculating the temperature comprises: measuring a total radiant energy (Et) radiated from the substrate using the sensor; calculating a corrected total emissivity (εt0) by applying a correction value for correcting the total emissivity (εt) which is the emissivity of the radiant energy (Et); and calculating the temperature (Ts) of the substrate using the total radiant energy (Et) and the corrected total emissivity (εt0).
Abstract:
A gas spraying apparatus according to the embodiment of the present invention includes a spray part disposed and aligned on one side outside a substrate in the width direction of the substrate, and having a plurality of nozzles for spraying gas toward the substrate, and a spray control unit for automatically controlling whether or not each of a plurality of nozzles sprays gas such that a gas density distribution type in the width direction of the substrate becomes a targeted gas density distribution type by the gas sprayed through the plurality of nozzles. Therefore, according to the embodiment of the present invention, it is easy to carry out the process with a plurality of types of process types or a plurality of types of gas density distribution types, and a time for adjusting the open or close operation of the plurality of nozzles can be shortened.
Abstract:
The present invention discloses a method of manufacturing a shadow mask, wherein hybrid processing is used to form a mask pattern on the shadow mask, the method includes: forming a wet-etched pattern by performing wet etching from above a base; and forming a laser-processed pattern that continues from the wet-etched pattern, by performing laser processing from above the base or from below the base on which the wet-etched pattern is formed. The present invention uses hybrid processing including wet etching and laser processing for manufacturing a shadow mask. The method has an effect on solving the productivity degradation of the conventional laser processing and provides a shadow mask with high quality using wet etching.
Abstract:
Disclosed is a calibrating apparatus which is adapted to remove a measurement deviation of a pyrometer, and more particularly, to an apparatus for calibrating a pyrometer, which calibrates a reference value so as to remove a deviation in a temperature measured in a pyrometer. The apparatus for calibrating a pyrometer includes a blackbody including a radiant space from which radiant energy is radiated, a body housing configured to receive the blackbody therein and including a light output wall having a light output port connected with the radiant space, a light output wall protecting cover comprising a transparent blocking plate disposed at a position opposite to the light output port so as to transmit a long wavelength of approximately 5 μm to approximately 20 μm may and configured to be coupled with the light output wall of the body housing, and a fixing member configured to fix the light output wall protecting cover to the light output wall of the body housing.