Abstract:
A functional molecular element is provided. The functional molecular element is adapted to change, by application of electric field, conformation of a disc shape like organic metallic complex molecule (1) which forms a columnar arrangement structure to exhibit function, wherein the structure of the organic metallic complex molecule is changed by application of electric field so that anisotropy of dielectric constant is changed. Accordingly, conductivity between measurement electrodes can be switched. As its stable value, there are three kinds of stable values or more. Thus, elements or devices to which such multi-value memory characteristic is applied can be constituted.
Abstract:
A functional molecular device displaying its functions under the action of an electrical field is provided. A Louis base molecule, exhibiting positive dielectric constant anisotropy or exhibiting dipole moment along the long-axis direction of the Louis base molecule, is arrayed in the form of a pendant on an electrically conductive linear or film-shaped principal-axis molecule of a conjugated system, via a metal ion capable of acting as a Louis acid. The resulting structure is changed in conformation on application of an electrical field to exhibit its function. The electrically conductive linear or film-shaped principal-axis molecule and the Louis base molecule form a complex with the metal ion. On application of the electrical field, the Louis base molecule performs a swinging movement or a seesaw movement to switch the electrical conductivity of the principal-axis molecule. This molecule exhibits electrical characteristics which may be reversed depending on whether or not the molecule has been subjected to electrical field processing. A molecular device having a function equivalent to one of CMOS may be produced from one and the same material.
Abstract:
A method of forming a composite containing a matrix component and at least one liquid crystal component includes providing a matrix, providing a first material that is phase separable from the matrix, adding the first material to the matrix, and replacing the first material that is phase separable form the matrix with a second material exhibiting liquid crystalline behavior.
Abstract:
An element for modu1ating an area is provided. The element for modulating area, in which there is used a functional molecular element adapted to change, by application of electric field, conformation of disc-shape like organic metallic complex molecule to exhibit function so that the structure of the organic metallic complex molecule is changed by application of electric field and the occupation area thereof is thus changed. The area modulating element is adapted to variously change molecular structure in accordance with control of applied electric field to change occupation area of molecule to thereby constitute a functional device such as optical filter and/or optical screen, etc.
Abstract:
The application relates to a chemical sensor device comprising a substrate (1), a sensor medium (3) formed on the substrate, the sensor medium comprising one-dimensional nanoparticles, wherein the one-dimensional nanoparticles essentially consist of a semiconducting AxBy compound, e.g. V2O5 and detection means (2) for detecting a change of a physical property of the sensor medium e.g. conductivity. The porosity of the sensor medium supports a fast access of the analyte to the sensing material and therefore a fast response of the sensor. The selectivity and sensitivity of the sensor can be tailored by doping the one-dimensional nanoscale material with different dopants or by varying the dopant concentration. Sensitivity of the sensor device to an analyte, preferably an amine, can be increased by increasing relative humidity of the sample to at least 5%.
Abstract:
An electronic device mounting structure includes a printed circuit board, a busbar, and an electronic device mounted on the busbar. The busbar includes a parallel portion extending parallel to the printed circuit board and a bent portion extending from the parallel portion toward the printed circuit board. The bent portion of the busbar includes a first bent portion, a second bent portion, and a tip portion A thickness direction of the first bent portion is substantially parallel to a length direction of the parallel portion A thickness direction of the second bent portion is substantially parallel to a width direction of the parallel portion. The tip portion stands substantially at a right angle with respect to the second bent portion and is soldered to the printed circuit board.
Abstract:
An electronic device mounting structure includes an electronic device, a busbar, and a solder. The electronic device has a body and a lead protruding from the body. The busbar has a flat portion and a wall portion rising from a periphery of the flat portion. The flat portion of the busbar extends parallel to a tip portion of the lead and is in contact with a back surface of the tip portion. The wall portion of the busbar faces a side surface of the tip portion with a predetermined space. The solder is located in the space and joins the side surface of the tip portion and the wall portion of the busbar
Abstract:
A method and associated substrate is provided for applying a layer or pattern of metal on a substrate. The method includes providing a target substrate, immobilizing a layer of polymeric material on the target substrate, and applying and immobilizing a layer or pattern of metal on the layer of polymeric material on the target substrate using a stamp onto which the layer or pattern of metal has previously been applied, by bringing the stamp into conformal contact with the target substrate.
Abstract:
Disclosed herein is a nucleic acid amplifier for carrying out a nucleic acid amplification reaction, the amplifier including at least: a plurality of wells configured to carry out the nucleic acid amplification reaction; a heating unit provided for every well; optical means capable of irradiating excitation light of a specified wavelength to all of the wells; and a fluorescence detection unit provided for every well.
Abstract:
The present invention relates to a photovoltaic device, especially hybrid solar cells, comprising at least one layer comprising evaporated fluoride and/or acetate; and to a method for preparing the same.