Abstract:
Provided are methods of fabricating flash memory devices that may prevent a short circuit from occurring between cell gate lines. Methods of fabricating such flash memory devices may include forming gate lines including a series of multiple cell gate lines and multiple selection gate lines. Each gate line may include a stacked structure of a tunnel insulating layer, a floating gate, a gate insulating layer, and/or a polysilicon layer operable to be a control gate, all formed on a semiconductor substrate. Methods may include forming a first insulating layer that selectively fills gaps between the cell gate lines from the bottom up and between adjacent ones of the cell gate lines and the selection gate lines, and does not fill a space located on outer sides of the selection gate lines that are opposite the plurality of cell gate lines. A spacer may be formed on the outer sides of the selection gate lines that are opposite to the cell gate lines, after forming the first insulating layer. A second insulating layer may be formed in a space where the spacer is formed.
Abstract:
A method of manufacturing a flash memory device includes: forming a dielectric layer on an active region of a substrate having an isolation region and the active region; forming a floating gate on the dielectric layer; forming an isolation layer in the isolation region; forming a nitride layer including a first nitride layer portion formed on an exposed surface of the floating gate and a second nitride layer portion formed on an exposed surface of the isolation layer; selectively removing nitrogen atoms from the second nitride layer portion of the nitride layer; forming an inter-gate dielectric layer on both the first nitride layer portion and the isolation layer; and forming a control gate on the inter-gate dielectric layer.
Abstract:
Disclosed herein is a device and method, preventing water from leaking to the outside of a multiple wall pipe, or a hollow part in a pipe wall, and forcibly correcting differences in inside and outside diameters between pipes provided on opposite ends of a joint, and simultaneously correcting circularity of the pipe. The heat plate includes a disc, a circular groove provided on an outer surface of a side of the disc and having a V-shaped cross-section with a flat bottom, and a heat source inserted in the disc. A method of joining a multiple wall pipe includes inserting an end of the cut multiple wall pipe into a V-shaped groove of the heat plate, heating and fusing the end of the cut multiple wall pipe by applying electricity to the heat plate, and compressing and cooling the cut multiple wall pipe after the heat plate is removed.
Abstract:
Methods of forming semiconductor devices including vertical channels and semiconductor devices formed using such methods are provided. The methods may include forming a stack including a plurality of insulating patterns alternating with a plurality of conductive patterns on an upper surface of a substrate and forming a hole through the stack. The hole may expose sidewalls of the plurality of insulating patterns and the plurality of conductive patterns. The sidewalls of the plurality of insulating patterns may be aligned along a first plane that is slanted with respect to the upper surface of the substrate, and midpoints of the respective sidewalls of the plurality of conductive patterns may be aligned along a second plane that is substantially perpendicular to the upper surface of the substrate.
Abstract:
The present invention relates to a composition for increasing resistance to plant pathogen by inducing an immune reaction of a plant wherein said composition comprises bacterial genetic materials as an effective component, a method for increasing resistance to plant pathogen by inducing an immune reaction of a plant wherein said method comprises a step of treating the plant with bacterial genetic materials, a plant produced by mentioned method to have increased resistance to plant pathogen, and seeds of such plant.
Abstract:
Disclosed is an apparatus and method for forming thermal fatigue cracks in a test piece for performance demonstration of nondestructive testing. The apparatus for forming thermal fatigue cracks includes a heating unit, having a conductive member attached around the outer surface of a pipe test piece and an induction heating coil disposed adjacent to the conductive member; a cooling unit, having a cooling water pump for forcibly supplying cooling water to the inner surface of the pipe test piece from a cooling water storage source and a cooling water hose; and a control unit for controlling operation of the heating unit and the cooling unit. Accordingly, thermal fatigue cracks similar to actual thermal fatigue cracks occurring during the operation of nuclear power plants or processing industry equipment are formed in a test piece, thereby assuring effective performance demonstration of nondestructive testing.
Abstract:
Semiconductor devices, and methods of fabricating the same, include forming a trench between a plurality of patterns on a substrate to be adjacent to each other, forming a first sacrificial layer in the trench, forming a first porous insulation layer having a plurality of pores on the plurality of patterns and on the first sacrificial layer, and removing the first sacrificial layer through the plurality of pores of the first porous insulation layer to form a first air gap between the plurality of patterns and under the first porous insulation layer.
Abstract:
Semiconductor devices, and methods of fabricating the same, include forming a trench between a plurality of patterns on a substrate to be adjacent to each other, forming a first sacrificial layer in the trench, forming a first porous insulation layer having a plurality of pores on the plurality of patterns and on the first sacrificial layer, and removing the first sacrificial layer through the plurality of pores of the first porous insulation layer to form a first air gap between the plurality of patterns and under the first porous insulation layer.
Abstract:
A method of manufacturing a non-volatile memory device, can be provided by forming a gate insulating layer and a gate conductive layer on a substrate that includes active regions that are defined by device isolation regions that include a carbon-containing silicon oxide layer. The gate conductive layer and the gate insulating layer can be sequentially etched to expose the carbon-containing silicon oxide layer. The carbon-containing silicon oxide layer can be wet-etched to recess a surface of the carbon-containing silicon oxide layer to below a surface of the substrate. Then, an interlayer insulating layer can be formed between the gate insulating layer and the gate conductive layer on the carbon-containing silicon oxide layer, where an air gap can be formed between the carbon-containing silicon oxide layer and the gate insulating layer.