Abstract:
A semiconductor package with a heat sink, a method for fabricating the same and a stiffener for the semiconductor package are proposed. At least one chip and the stiffener surrounding the chip are mounted on a substrate, and the heat sink is respectively attached to a non-active surface of the chip and the stiffener. A plurality of penetrating openings are formed on the stiffener, and an adhesive is filled in the penetrating openings to enhance the bonding strength of the heat sink and the stiffener, thereby inhibiting the heat sink and the stiffener from coming off.
Abstract:
A heat dissipating structure and a semiconductor package with the same are proposed. A substrate is used to accommodate at least one chip thereon, and the chip is electrically connected to the substrate. A heat dissipating structure having a flat portion and a support portion is mount on the substrate via the support portion by means of an adhesive. At least one groove is formed on the support portion and at least one air vent is formed around the groove to allow the groove to communicate with the outside via the air vent, such that the adhesive is allowed to fill the groove to expel air from the groove to the atmosphere through the air vent, thereby preventing the air from trapped in the groove.
Abstract:
A semiconductor package with a heat dissipating structure includes a substrate, a chip and a heat dissipating structure. The chip is mounted on and electrically connected to the substrate. The heat dissipating structure includes a first heat sink having at least one positioning portion, and at least one second heat sink having at least one second positioning portion and at least one hollow portion. The second heat sink is mounted on the substrate, and the first positioning portion of the first heat sink is attached to the second positioning portion of the second heat sink, allowing the chip to be accommodated in a space defined by the first heat sink, the hollow portion of the second heat sink and the substrate. This semiconductor package has good heat dissipating efficiency and is cost-effective to fabricate.
Abstract:
A semiconductor package and a fabrication method thereof are disclosed. The fabrication method includes the steps of providing a semiconductor chip having an active surface and a non-active surface opposing to the active surface, roughening a peripheral portion of the non-active surface so as to divide the non-active surface into the peripheral portion formed with a roughened structure and a non-roughened central portion, mounting the semiconductor chip on a chip carrier via a plurality of solder bumps formed on the active surface, forming an encapsulant on the chip carrier to encapsulate the semiconductor chip. The roughened structure formed on the peripheral portion of the non-active surface of the semiconductor chip can reinforce the bonding between the semiconductor chip and the encapsulant, and the non-roughened central portion of the non-active surface of the semiconductor chip can maintain the structural strength of the semiconductor chip.
Abstract:
An electronic device is disclosed. The electronic device comprises a transmitter, a converter, and a receiver. The transmitter transmits data and a control signal. The converter receives the control signal from the transmitter and converts the control signal. The receiver receives the data from the transmitter via a data bus isolated from the converter and receives the converted control signal from the converter. The data transmitted from the transmitter is directly electrically connected to the receiver.
Abstract:
An apparatus for capturing and storing real-time images is provided. A camera module records frames corresponding to sensed light, outputs pixel data of the frames on a data bus, and generates synchronization control signals to control the synchronized transmission of the frames. An interrupt controller receives the synchronization control signals and correspondingly generates interrupt signals. A processing unit receives the interrupt signals, fetches the pixel data of the frames on the data bus according to at least one of the interrupt signals, and stores the fetched pixel data in a memory device.
Abstract:
The invention discloses a general purpose interface controller, including a slave interface controller and a master interface controller, used to exchange data among master devices and slave devices in an electronic device. The slave interface controller receives data and a first control signal from one of the master devices, and converts the first control signal to a request signal. The master interface controller receives the data and the request signal from the slave interface controller, converts the request signal to a second control signal recognized by at least one of the slave devices, and forwards the data and the second control signal to the slave device.
Abstract:
An apparatus for capturing and storing real-time images is provided. A camera module records frames corresponding to sensed light, outputs pixel data of the frames on a data bus, and generates synchronization control signals to control the synchronized transmission of the frames. An interrupt controller receives the synchronization control signals and correspondingly generates interrupt signals. A processing unit receives the interrupt signals, fetches the pixel data of the frames on the data bus according to at least one of the interrupt signals, and stores the fetched pixel data in a memory device.
Abstract:
An electronic device is disclosed. The electronic device comprises a transmitter, a converter, and a receiver. The transmitter transmits data and a control signal. The converter receives the control signal from the transmitter and converts the control signal. The receiver receives the data from the transmitter via a data bus isolated from the converter and receives the converted control signal from the converter. The data transmitted from the transmitter is directly electrically connected to the receiver
Abstract:
A semiconductor package and a fabrication method thereof are disclosed. The fabrication method includes the steps of providing a semiconductor chip having an active surface and a non-active surface opposing to the active surface, roughening a peripheral portion of the non-active surface so as to divide the non-active surface into the peripheral portion formed with a roughened structure and a non-roughened central portion, mounting the semiconductor chip on a chip carrier via a plurality of solder bumps formed on the active surface, forming an encapsulant on the chip carrier to encapsulate the semiconductor chip. The roughened structure formed on the peripheral portion of the non-active surface of the semiconductor chip can reinforce the bonding between the semiconductor chip and the encapsulant, and the non-roughened central portion of the non-active surface of the semiconductor chip can maintain the structural strength of the semiconductor chip.