Abstract:
A lateral-double diffused MOS device is provided. The device includes: a first well having a first conductive type and a second well having a second conductive type disposed in a substrate and adjacent to each other; a drain and a source regions having the first conductive type disposed in the first and the second wells, respectively; a field oxide layer (FOX) disposed on the first well between the source and the drain regions; a gate conductive layer disposed over the second well between the source and the drain regions extending to the FOX; a gate dielectric layer between the substrate and the gate conductive layer; a doped region having the first conductive type in the first well below a portion of the gate conductive layer and the FOX connecting to the drain region. A channel region is defined in the second well between the doped region and the source region.
Abstract:
A nonvolatile memory integrated circuit has a semiconductor substrate and a nonvolatile memory device on the semiconductor substrate. The device has a transistor and a capacitor on the semiconductor substrate, and a shared floating gate connecting the gate regions of the transistor and the capacitor. The transistor has at least a doping region defining the source and drain regions, as well as three other doping regions overlapping the source and drain regions. Also disclosed are a nonvolatile memory circuit with multiple such nonvolatile memory device, and methods for making the nonvolatile memory circuit with one or more such nonvolatile memory devices.
Abstract:
A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure comprises a substrate, a device region, a first doped region and a gate structure. The first doped region is formed in the substrate adjacent to the device region. The gate structure is on the first doped region. The first doped region is overlapped the gate structure.
Abstract:
A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure comprises a first doped region and a second doped region. The first doped region comprises a first contact region. The first doped region and the first contact region have a first type conductivity. The second doped region comprises a second contact region. The second doped region and the second contact region have a second type conductivity opposite to the first type conductivity. The first doped region is adjacent to the second doped region.
Abstract:
A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure comprises a diode. The diode comprises a first doped region, a second doped region and a third doped region. The first doped region and the third doped region have a first conductivity type. The second doped region has a second conductivity type opposite to the first conductivity type. The second doped region and the third doped region are separated from each other by the first doped region. The third doped region has a first portion and a second portion adjacent to each other. The first portion and the second portion are respectively adjacent to and away from the second doped region. A dopant concentration of the first portion is bigger than a dopant concentration of the second portion.
Abstract:
A semiconductor structure and a manufacturing method for the same are provided. The semiconductor structure includes a first doped well, a first doped electrode, a second doped electrode, doped strips and a doped top region. The doped strips are on the first doped well between the first doped electrode and the second doped electrode. The doped strips are separated from each other. The doped top region is on the doped strips and extended on the first doped well between the doped strips. The first doped well and the doped top region have a first conductivity type. The doped strips have a second conductivity type opposite to the first conductivity type.
Abstract:
A bipolar junction transistor (BJT) device including a base region, an emitter region and a collector region comprises a substrate, a deep well region in the substrate, a first well region in the deep well region to serve as the base region, a second well region in the deep well region to serve as the collector region, the second well region and the first well region forming a first junction therebetween, and a first doped region in the first well region to serve as the emitter region, the first doped region and the first well region forming a second junction therebetween, wherein the first doped region includes a first section extending in a first direction and a second section extending in a second direction different from the first direction, the first section and the second section being coupled with each other.
Abstract:
A lateral power MOSFET with a low specific on-resistance is described. Stacked P-top and N-grade regions in patterns of articulated circular arcs separate the source and drain of the transistor.
Abstract:
The present invention discloses a laterally double-diffused metal oxide semiconductor transistor (LDMOS) and a method for fabricating the same. The LDMOS includes a substrate, a first well, a drain, a second well and a source. The substrate includes a first conductive dopant. The first well includes a second conductive dopant and formed in a part of the substrate, and the drain is located in the first well. The second well includes the first conductive dopant and formed in another part of the substrate, and the source located in the second well. The source includes a lightly doped region and a heavily doped region extending downwardly from a top surface of the substrate. The depth of the lightly doped region is more than the depth of the heavily doped region.
Abstract:
A semiconductor structure and a method for operating the same are provided. The semiconductor structure includes a substrate, a first doped region, a second doped region, a third doped region, a first trench structure and a second gate structure. The first doped region is in the substrate. The first doped region has a first conductivity type. The second doped region is in the first doped region. The second doped region has a second conductivity type opposite to the first conductivity type. The third doped region having the first conductivity type is in the second doped region. The first trench structure has a first gate structure. The first gate structure and the second gate structure are respectively on different sides of the second doped region.