Abstract:
This invention relates to polynucleotide sequences encoding SUT2 or SUT4 sucrose transporter genes. Methods for increasing seed oil content and evaluating increased oil content in a plant seed are described. The compositions and methods disclosed herein employ a variety of sequences that encode sucrose transporters and a variety of sequences that influence fatty acid accumulation, including for example, DGAT, Lec1 and ODP1 transcription factor. In specific embodiments, overexpression of SUT2 and/or SUT4 sucrose transporters in combination with DGAT genes further increase plant seed oil production compared to a high oil plant comprising recombinant DNA constructs that do not overexpress SUT2 or SUT4 transporters.
Abstract:
Engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 25% eicosapentaenoic acid (EPA, an ω-3 polyunsaturated fatty acid) in the total oil fraction are described. These strains comprise various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprise various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of EPA. Production host cells are claimed, as are methods for producing EPA within said host cells.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-8 desaturases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these delta-8 desaturases in plants and oleaginous yeast.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding a delta-8 desaturase along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using this delta-8 desaturase in plants and oleaginous yeast are disclosed.
Abstract:
Transgenic oilseeds having increased total fatty acid content of at least 10% and altered fatty acid profiles when compared to the total fatty acid content of null segregant oilseeds are described. Novel DGAT genes are used to achieve the increase in seed storage lipids.
Abstract:
An engineered strain of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 5.6% docosahexaenoic acid acid (DHA, an w-3 polyunsaturated fatty acid) in the total oil fraction is described. This strain comprises various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprises various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of DHA. Production host cells are claimed, as are methods for producing DHA within said host cells.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-5 desaturase along with a method of making long chain polyunsaturated fatty acids (PUFAs) using this delta-5 desaturase in plants and oleaginous yeast are disclosed.
Abstract:
The present invention relates to Δ8 desaturase genes, which have the ability to convert eicosadienoic acid (EDA; 20:2 ω-6) to dihomo-γ-linolenic acid (DGLA; 20:3 ω-6) and/or eicosatrienoic acid (ETrA; 20:3 ω-3) to eicosatetraenoic acid (ETA; (20:3 ω-3). Isolated nucleic acid fragments and recombinant DNA constructs comprising such fragments encoding Δ8 desaturases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these Δ8 desaturases in oleaginous yeast are disclosed.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-8 desaturases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) and using these delta-8 desaturases in plants.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding a delta-8 desaturase along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using this delta-8 desaturase in plants and oleaginous yeast are disclosed.