Abstract:
In a first aspect, a method of forming a memory cell is provided that includes (1) forming a metal-insulator-metal (“MIM”) stack above a substrate, the MIM stack including a carbon-based switching material having a resistivity of at least 1×104 ohm-cm; and (2) forming a steering element coupled to the MIM stack. Numerous other aspects are provided.
Abstract:
In some aspects, a microelectronic structure is provided that includes (1) a first conducting layer; (2) a first dielectric layer formed above the first conducting layer and having a feature that exposes a portion of the first conducting layer; (3) a graphitic carbon film disposed on a sidewall of the feature defined by the first dielectric layer and in contact with the first conducting layer at a bottom of the feature; and (4) a second conducting layer disposed above and in contact with the graphitic carbon film. Numerous other aspects are provided.
Abstract:
Memory cells, and methods of forming such memory cells, are provided that include a carbon-based reversible resistivity switching material. In particular embodiments, methods in accordance with this invention form a memory cell by forming a carbon-based reversible resistance-switching material above a substrate, forming a carbon nitride layer above the carbon-based reversible resistance-switching material, and forming a barrier material above the carbon nitride layer using an atomic layer deposition process. Other aspects are also provided.
Abstract:
The embodiments generally relate to methods of making semiconductor devices, and more particularly, to methods for making semiconductor pillar structures and increasing array feature pattern density using selective or directional gap fill. The technique has application to a variety of materials and can be applied to making monolithic two or three-dimensional memory arrays.
Abstract:
Memory cells, and methods of forming such memory cells, are provided that include a steering element coupled to a carbon-based reversible resistivity switching material that has an increased resistivity, and a switching current that is less than a maximum current capability of the steering element used to control current flow through the carbon-based reversible resistivity switching material. In particular embodiments, methods and apparatus in accordance with this invention form a steering element, such as a diode, having a first width, coupled to a reversible resistivity switching material, such as aC, having a second width smaller than the first width.
Abstract:
A non-volatile memory device includes a plurality of pillars, where each of the plurality of pillars contains a non-volatile memory cell containing a steering element and a storage element and at least one of a top corner or a bottom corner of each of the plurality of pillars is rounded. A method of making non-volatile memory device includes forming a stack of device layers, and patterning the stack to form a plurality of pillars, where each of the plurality of pillars contains a non-volatile memory cell that contains a steering element and a storage element, and where at least one of top corner or bottom corner of each of the plurality of pillars is rounded.
Abstract:
Methods in accordance with this invention form a microelectronic structure by forming a carbon nano-tube (“CNT”) layer, and forming a carbon layer (“carbon liner”) above the CNT layer, wherein the carbon liner comprises: (1) a first portion disposed above and in contact with the CNT layer; and/or (2) a second portion disposed in and/or around one or more carbon nano-tubes in the CNT layer. Numerous other aspects are provided.
Abstract:
Methods of forming memory cells are disclosed which include forming a pillar above a substrate, the pillar including a steering element and a memory element, and performing one or more etches vertically through the memory element, but not the steering element, to form multiple memory cells that share a single steering element. Memory cells formed from such methods, as well as numerous other aspects are also disclosed.
Abstract:
Memory cells, and methods of forming such memory cells, are provided that include a carbon-based reversible resistivity switching material. In particular embodiments, methods in accordance with this invention form a memory cell by forming a carbon-based reversible resistance-switching material above a substrate, forming a carbon nitride layer above the carbon-based reversible resistance-switching material, and forming a barrier material above the carbon nitride layer using an atomic layer deposition process. Other aspects are also provided.
Abstract:
Methods of forming memory devices, and memory devices formed in accordance with such methods, are provided, the methods including forming a via above a first conductive layer, forming a nonconformal carbon-based resistivity-switchable material layer in the via and coupled to the first conductive layer; and forming a second conductive layer in the via, above and coupled to the nonconformal carbon-based resistivity-switchable material layer. Numerous other aspects are provided.