Abstract:
A substrate bias voltage detection unit compares a level of a substrate bias voltage with a reference voltage in response to a self-refresh signal, an idle signal, and a refresh count signal so as to output an oscillating driving signal, enables the oscillating driving signal when the substrate bias voltage is equal to or higher than a first level in a normal mode, disables the oscillating driving signal when the substrate bias voltage is at a second level in a self-refresh mode, and disables the oscillating driving signal when the substrate bias voltage is at a third level in the self-refresh mode. An oscillation unit outputs an oscillating signal according to the oscillating driving signal. A voltage pumping unit controls pumping of the substrate bias voltage according to an output signal of the oscillation unit and then outputs a pumped substrate bias voltage.
Abstract:
A slurry composition useful for chemical mechanical polishing of the surface of a material layer, e.g., a silicon oxide layer, is disclosed. A first material surface which is exposed to the slurry exhibits hydrophilicity, while a second material layer, e.g., a polysilicon layer, the surface of which is also exposed to the slurry, exhibits hydrophobicity, and accordingly acts as a polishing stopping layer. The slurry composition consists essentially of water, abrasive grains, and a polymer additive having both hydrophilic and hydrophobic functional groups.
Abstract:
A memory includes a phase change memory element having a memory layer of a calcogenide material and a glue layer of an alloy of the form TiaXbNc where X is selected in the group comprising silicon, aluminum, carbon, or boron, and c may be 0. The nitrogen and silicon are adapted to reduce the diffusion of titanium toward the chalcogenide layer.
Abstract translation:存储器包括相变存储元件,该相变存储元件具有硫化物质材料的存储层和形式为Ti x N b N c C的合金的胶层, / SUB>其中X选自硅,铝,碳或硼,c可以为0.氮和硅适于减少钛向硫族化物层的扩散。
Abstract:
A multilevel phase change memory may be formed of a chalcogenide material formed between a pair of spaced electrodes. The cross-sectional area of the chalcogenide material may decrease as the material extends from one electrode to another. As a result, the current density decreases from one electrode to the other. This means that a higher current is necessary to convert the material that has the largest cross-sectional area. As a result, different current levels may be utilized to convert different amounts of the chalcogenide material to the amorphous or reset state. A distinguishable resistance may be associated with each of those different amounts of amorphous material, providing the opportunity to engineer a number of different current selectable programmable states.
Abstract:
An anti-fuse circuit includes an anti-fuse device and an electric field control unit. The anti-fuse device is formed having a MOS structure including a first junction, a second junction and a gate terminal. The electric field control unit performs a control operation so that an electric field is formed in the anti-fuse device at the time of an anti-fusing operation. Electric fields formed at the first and second junctions of the anti-fuse device are separately controlled, so that breakdown can occur at two points. Further, the gate terminal of the anti-fuse device is implemented in the form of a band-shaped closed circuit.
Abstract:
A mold apparatus having at least a pair of molds formed with a cavity, at least one pipe accommodator formed in the molds, at least one heat pipe mounted in the pipe accommodator, a heat-cool source part connected to the heat pipe the heat and cool the heat pipe, and a controller to control the heat-cool source part to selectively heat and cool the heat pipe. Thus a mold apparatus to reduce a molding cycle and improve the quality of a molded product's appearance is provided.
Abstract:
A CMP oxide slurry includes an aqueous solution containing abrasive particles and two or more different passivation agents. Preferably, the aqueous solution is made up of deionized water, and the abrasive particles are a metal oxide selected from the group consisting of ceria, silica, alumina, titania, zirconia and germania. Also, a first passivation agent may be an anionic, cationic or nonionic surfactant, and a second passivation agent may be a phthalic acid and its salts. In one example, the first passivation agent is poly-vinyl sulfonic acid, and the second passivation agent is potassium hydrogen phthalate. The slurry exhibits a high oxide to silicon nitride removal selectivity.
Abstract:
Chemical mechanical apparatuses including a polishing pad conditioning unit for improving a conditioning rate and wear uniformity of a polishing pad are provided. In one aspect, a chemical mechanical polishing apparatus includes a polishing pad conditioner including conditioning disks disposed in a radial direction of a planarizing surface of a circular polishing pad and contacted with the planarizing surface of the circular polishing pad during rotation of the circular polishing pad. The conditioning disks are connected to first drive units supported by an arm disposed over the circular polishing pad and extended in a radial direction of a planarizing surface of the circular polishing pad. The arm is connected to second drive units. The second drive units move the arm horizontally and reciprocally in the radial direction of the planarizing surface of the circular polishing pad. Thus, a conditioning rate and wear uniformity of the polishing pad may be improved.
Abstract:
A method of forming a metal pattern using a selective electroplating process is provided. First, a dielectric layer is formed on an underlying layer. Then, a trench defining blanket region is formed by patterning the dielectric layer. A diffusion barrier layer is conformally formed in the trench and on the blanket region. A polishing/plating stop layer and an upper seed layer are conformally formed on the diffusion barrier layer in a successive manner. The polishing/plating layer in the blanket region is exposed by selectively removing the upper seed layer in the blanket region, and, at the same time, a seed layer pattern remaining in the trenches is formed. An upper conductive layer is formed to fill the trench surrounded by the seed layer pattern using an electroplating process. Then, the dielectric layer in the blanket region is exposed by planarizing the upper conductive layer, the polishing/plating stop layer, the seed layer pattern, and the diffusion barrier layer.