Abstract:
The present invention is a method of cleaning a heat treatment apparatus that deposits an SiO2 film by mean of TEOS on an object to be processed contained in a treatment vessel capable of forming a vacuum. In the cleaning method, the heat treatment apparatus is cleaned by supplying an HF gas and an NH3 gas into the treatment vessel.
Abstract:
A silicon dioxide film removing method is capable of removing a silicon dioxide film, such as a natural oxide film or a chemical oxide film, at a temperature considerably higher than a room temperature. The silicon dioxide film removing method of removing a silicon dioxide film formed on a workpiece in a processing vessel 18 that can be evacuated uses a mixed gas containing HF gas and NH3 gas for removing the silicon dioxide film. The silicon dioxide film can be efficiently removed from the surface of the workpiece by using the mixed gas containing HF gas and NH3 gas.
Abstract:
A thin film deposition system cleaning method is capable of efficiently removing reaction products deposited on surfaces of component members of a thin film deposition system. A thermal processing system 1 capable of carrying out the thin film deposition system cleaning method includes a controller 100. The controller 100 controls a heating means so as to heat the interior of a reaction tube 2 at a temperature in the range of 400° C. to 700° C. The controller 100 controls a cleaning gas supply means for supplying a cleaning gas containing fluorine and hydrogen fluoride through a process gas supply pipe 17 into the reaction tube 2 to remove deposits deposited on surfaces exposed to an atmosphere in the reaction tube 2.
Abstract:
A film formation apparatus for a semiconductor process includes a source gas supply circuit to supply into a process container a source gas for depositing a thin film on target substrates, and a mixture gas supply circuit to supply into the process container a mixture gas containing a doping gas for doping the thin film with an impurity and a dilution gas for diluting the doping gas. The mixture gas supply circuit includes a gas mixture tank disposed outside the process container to mix the doping gas with the dilution gas to form the mixture gas, a mixture gas supply line to supply the mixture gas from the gas mixture tank into the process container, a doping gas supply circuit to supply the doping gas into the gas mixture tank, and a dilution gas supply circuit to supply the dilution gas into the gas mixture tank.
Abstract:
An oxidation method of oxidizing surfaces of workpieces heated at a predetermined temperature in a vacuum atmosphere in a processing vessel produces active hydroxyl and active oxygen species. The active hydroxyl and active oxygen species oxidize the surfaces of the workpieces in a processing vessel. Both the intrafilm thickness uniformity and the characteristics of the oxide film can be improved, maintaining oxidation rate on a relatively high level.
Abstract:
A wafer boat that supports a plurality of semiconductor wafers at a predetermined pitch, which are to be processed by a vertical thermal processing furnace, comprises a plurality of support columns; wafer support grooves formed in the support columns for supporting the peripheral edges of the wafers; and a film thickness equalization plate that is substantially the same size as the wafers, or is larger than the wafers, and is provided in wafer support grooves that are adjacent to one another in the vertical direction. This configuration ensures the same type of film is formed on the surface facing the surface of the wafer, achieving uniformity of the thus-formed film thickness.
Abstract:
Disclosed is an MOCVD method of forming a tantalum oxide film. First, water vapor used as an oxidizing agent is supplied into a process container to cause moisture to be adsorbed on a surface of each semiconductor wafer. Then, PET gas used as a raw material gas is supplied into the process container and is caused to react with the moisture on the wafer at a process temperature of 200° C., thereby forming an interface layer of tantalum oxide. Then, PET gas and oxygen gas are supplied into the process container at the same time, and are caused to react with each other at a process temperature of 410° C., thereby forming a main layer of tantalum oxide on the interface layer.
Abstract:
A wafer boat that supports a plurality of semiconductor wafers at a predetermined pitch, which are to be processed by a vertical thermal processing furnace, comprises a plurality of support columns; wafer support grooves formed in the support columns for supporting the peripheral edges of the wafers; and a film thickness equalization plate that is substantially the same size as the wafers. or is larger than the wafers, and is provided in wafer support grooves that are adjacent to one another in the vertical direction. This configuration ensures the same type of film is formed on the surface facing the surface of the wafer, achieving uniformity of the thus-formed film thickness.
Abstract:
A sample is placed on a sample receiving stage for receiving the sample. The sample is transferred one at a time to a measuring table, and a thickness of a thin film formed on a surface of the sample is measured by irradiating the surface of the sample with a measuring light beam. A covering structure is disposed between the sample receiving stage and the measuring table to define a sample transfer space and a measuring space in which the measuring table is disposed. A high-purity purging gas containing only a very small amount of contaminants is supplied through purging gas supply devices into the transfer space and the measuring space covered with the covering structure.
Abstract:
A number of semiconductor wafers are retained in a wafer boat such that the wafers are disposed at intervals in the vertical direction. The wafer boat is loaded into a process tube of a vertical type thermal processing apparatus. The inside of the process tube is heated to 300.degree. to 530.degree. C. in a depressurized atmosphere, and a process gas including a disilane gas is fed into the process tube such that the disilane gas flows at a flow rate of 300 SCCM or more, thereby to form silicon films.