Abstract:
A novel FLASH-based EEPROM cell, decoder, and layout scheme are disclosed to eliminate the area-consuming divided triple-well in cell array and allows byte-erase and byte-program for high P/E cycles. Furthermore, the process-compatible FLASH cell for EEPROM part can be integrated with FLASH and ROM parts so that a superior combo, monolithic, nonvolatile memory is achieved. Unlike all previous arts, the novel combo nonvolatile memory of the present invention of ROM, EEPROM and FLASH or combination of any two is made of one unified, fully compatible, highly-scalable BN+ cell and unified process. In addition, its cell operation schemes have zero array overhead and zero disturbance during P/E operations. The novel combo nonvolatile memory is designed to meet the need in those markets requiring flexible write size in units of bytes, pages and blocks at a lower cost.
Abstract:
A novel FLASH-based EEPROM cell, decoder, and layout scheme are disclosed to eliminate the area-consuming divided triple-well in cell array and allows byte-erase and byte-program for high P/E cycles. Furthermore, the process-compatible FLASH cell for EEPROM part can be integrated with FLASH and ROM parts so that a superior combo, monolithic, nonvolatile memory is achieved. Unlike all previous arts, the novel combo nonvolatile memory of the present invention of ROM, EEPROM and FLASH or combination of any two is made of one unified, fully compatible, highly-scalable BN+ cell and unified process. In addition, its cell operation schemes have zero array overhead and zero disturbance during P/E operations. The novel combo nonvolatile memory is designed to meet the need in those markets requiring flexible write size in units of bytes, pages and blocks at a lower cost.
Abstract:
A three-terminal semiconductor transistor device comprises a semiconductor base region in contact with a first electric terminal, a conductive emitter region in contact with the semiconductor base region, forming a first Schottky barrier junction at the interface of the conductive emitter region and the semiconductor base region. The conductive emitter region is in contact with a second electric terminal. The three-terminal semiconductor transistor device further includes a conductive collector region in contact with the semiconductor base region, forming a second Schottky barrier junction at the interface of the conductive collector region and the semiconductor base region. The conductive collector region is in contact with a third electric terminal. The tunneling currents through the first and the second Schottky barrier junctions are substantially controlled by the voltage of the semiconductor base region.
Abstract:
A digital circuit includes at least one quantum wire resonant tunneling transistor that includes an emitter terminal, a base terminal, a collector terminal, an emitter region in connection with the emitter terminal, a base region in connection with the base terminal, a collector region in connection with the collector terminal, an emitter barrier region between the emitter region and the base region, and a collector barrier region between the collector region and the base region. At least one of the emitter region, the base region, and the collector region includes a plurality of metal quantum wires.
Abstract:
A quantum wire device includes a barrier formed by an insulator or a wide bandgap semiconductor, and metal quantum wires comprising a metal material and embedded in the barrier. Potential wells are formed for electrons in the metal quantum wires by the insulator or the wide bandgap semiconductor. The work function of the metal quantum wires is reduced by quantum confinement compared to a bulk form of the metal material. The metal quantum wires are electrically connected. The metal quantum wires include an exposed active area for electron emission or electron collection.
Abstract:
A semiconductor transistor device includes an emitter region that includes a plurality of metal quantum wires and is connected to an emitter terminal, a base region that includes a plurality of metal quantum wires and is connected to a base terminal, a collector region comprising a plurality of metal quantum wires and is connected to a collector terminal, an emitter barrier region between the emitter region and the base region, and a collector barrier region between the collector region and the base region.
Abstract:
A quantum wire device includes a barrier formed by an insulator or a wide bandgap semiconductor, and metal quantum wires comprising a metal material and embedded in the barrier. Potential wells are formed for electrons in the metal quantum wires by the insulator or the wide bandgap semiconductor. The work function of the metal quantum wires is reduced by quantum confinement compared to a bulk form of the metal material. The metal quantum wires are electrically connected. The metal quantum wires include an exposed active area for electron emission or electron collection.
Abstract:
A semiconductor transistor device includes one or more conductive base regions, a first semiconductor barrier region, a second semiconductor barrier region, a conductive emitter region, and a conductive collector region. The first semiconductor barrier region or the second semiconductor barrier region has a dimension smaller than 100 Å. A first Schottky barrier junction is formed at the interface of the first semiconductor barrier region and the one or more conductive base regions. A second Schottky barrier junction is formed at the interface of the second semiconductor barrier region and the one or more conductive base regions. A third Schottky barrier junction is formed at the interface of the conductive emitter region and the first semiconductor barrier region. A fourth Schottky barrier junction is formed at the interface of the conductive collector region and the second semiconductor barrier region.
Abstract:
A novel FLASH-based EEPROM cell, decoder, and layout scheme are disclosed to eliminate the area-consuming divided triple-well in cell array and allows byte-erase and byte-program for high P/E cycles. Furthermore, the process-compatible FLASH cell for EEPROM part can be integrated with FLASH and ROM parts so that a superior combo, monolithic, nonvolatile memory is achieved. Unlike all previous arts, the novel combo nonvolatile memory of the present invention of ROM, EEPROM and FLASH or combination of any two is made of one unified, fully compatible, highly-scalable BN+ cell and unified process. In addition, its cell operation schemes have zero array overhead and zero disturbance during P/E operations. The novel combo nonvolatile memory is designed to meet the need in those markets requiring flexible write size in units of bytes, pages and blocks at a lower cost.
Abstract:
A semiconductor device having an electrically erasable programmable read only memory (EEPROM) comprises a contactless array of EEPROM memory cells disposed in rows and columns and constructed over a silicon-on-insulator wafer. Each EEPROM memory cell comprises a drain region, a source region, a gate region, and a body region. The semiconductor device further comprises a plurality of gate lines each connecting the gate regions of a row of EEPROM memory cells, a plurality of body lines each connecting the body regions of a column of EEPROM memory cells, a plurality of source lines each connecting the source regions of a column of EEPROM memory cells, and a plurality of drain lines each connecting the drain regions of a column of EEPROM memory cells. The source lines and the drain lines are buried lines, and the source regions and the drain regions of a column of EEPROM memory cells are insulated from the source regions and the drain regions of the adjacent columns of EEPROM memory cells.