Abstract:
A method of cleaning metallic films built up within a thin film deposition apparatus is disclosed. The method includes an oxidation step to oxidize the metallic film and produce a film of the oxide thereof, a complexing step to complex the oxide film and produce a complex thereof, and a sublimation step to sublimate the complex. The conditions of these cleaning steps are set so that the oxidation step is the rate-determining step.
Abstract:
A television camera 12 for picking up a subject and producing an video signal, a plurality of microphones 11L, 11R which are arranged so as to be separate from each other and which collect a vocal sound from the subject filmed by the television camera and output audio signals, an estimating circuit 13 for estimating the position of the sound source on the basis of the audio signals obtained from those microphones, and a coding circuit for encoding the video signal for a specific range of picture area centered the sound source position estimated by the estimating circuit with a larger amount of codes than the video signals for the other picture areas so that the picture area for the specific range may have a higher resolution than the other picture areas construct.
Abstract:
There is provided a method for producing a carbon material coated with carbon film comprising the steps of dissolving an aromatic polyamide imide resin in an organic solvent to obtain a solution, applying this solution to a carbon material or impregnating the carbon material with the solution, curing the material at 300 to 400%, and carbonizing and/or graphitizing the material by baking under non-oxidizing atmosphere. There is also provided a carbon material coated with an amorphous carbon film which is a product of thermal decomposition of aromatic polyamide imide.
Abstract:
In a transfer type electrophotographic copying apparatus which comprises a reciprocating platform for supporting an original to be copied, a rotatable photoreceptor drum of a small diameter, and processing devices of small size disposed around the photoreceptor drum for compact size of the copying apparatus, an improved transfer device and a transferred image disturbance prevention device are further included for efficient copying operations.
Abstract:
A shift conversion catalyst layer is divided into at least two front and back stages. A first catalyst and a second catalyst are provided on the upstream side and the downstream side, respectively. The first catalyst has a property that a carbon monoxide conversion rate decreases with an increase in carbon dioxide concentration in a supplied reaction gas at a constant carbon monoxide concentration in the supplied reaction gas and a constant reaction temperature. The first catalyst is combined with the second catalyst such that the degree of decrease in carbon monoxide conversion rate with respect to an increase in carbon dioxide concentration in the supplied reaction gas in the second catalyst is lower than that in the first catalyst. Whereby, the conversion rate of a carbon monoxide concentration of a carbon monoxide shift conversion apparatus can be improved without increasing the used amount of a shift conversion catalyst.
Abstract:
A steam permselective membrane containing a crosslinked hydrophilic polymer is provided. The steam permselective membrane may further contain at least one alkali metal compound selected from the group consisting of a cesium compound, a potassium compound and a rubidium compound.
Abstract:
An image forming apparatus includes a feeder having a longer side direction orthogonal to a conveyance direction of a recording medium, and feeds a maximum size recording medium with a longer side first, an image forming unit having a maximum sheet feed width corresponding to a longer side length of the maximum size recording medium, and prints a toner image onto the recording medium, and a sub feeder that can feed the maximum size recording medium to the image forming unit independently from the feeder. A post processing apparatus receives a printed recording medium and executes post processing on a side of the recording medium. A feeding source of the maximum size recording medium is selected from the feeder and the sub feeder for executing the post processing on the longer and shorter sides of the maximum size recording medium, respectively.
Abstract:
A semiconductor device includes at least one semiconductor constructing body provided on one side of a base member, and having a semiconductor substrate and a plurality of external connecting electrodes provided on the semiconductor substrate. An insulating layer is provided on the one side of the base member around the semiconductor constructing body. An adhesion increasing film is formed between the insulating layer, and at least one of the semiconductor constructing body and the base member around the semiconductor constructing body, for preventing peeling between the insulating layer and the at least one of the semiconductor constructing body and base member.
Abstract:
A desulfurizing agent is produced by mixing a copper compound, a zinc compound and an ammonium compound with an aqueous solution of an alkali substance to prepare or precipitate followed by calcitrating the resulting precipitate to form a calcined precipitate into a shape form of a copper oxide-zinc oxide-aluminum oxide mixture. The shaped form is impregnated with iron or nickel and calcined to produce a calcined oxide and reduced with hydrogen to form a sulfur-absorption desulfurizing agent.
Abstract:
First, a trench formed in parts of a semiconductor wafer, a sealing film and others corresponding to a dicing street and both sides thereof. In this state, the semiconductor wafer is separated into silicon substrates by the formation of the trench. Then, a resin protective film is formed on the bottom surface of each silicon substrate including the inner part of the trench. In this case, the semiconductor wafer is separated into the silicon substrates. However, a support plate is affixed to the upper surfaces of the columnar electrode and the sealing film via an adhesive layer. Therefore, when the resin protective film is formed, it is possible to prevent the entirety including the separated silicon substrates from being easily warped.