Abstract:
Self-aligned split-gate NAND flash memory cell array and process of fabrication in which rows of self-aligned split-gate cells are formed between a bit line diffusion and a common source diffusion in the active area of a substrate. Each cell has control and floating gates which are stacked and self-aligned with each other, and erase and select gates which are split from and self-aligned with the stacked gates, with select gates at both ends of each row which partially overlap the bit line the source diffusions. The channel regions beneath the erase gates are heavily doped to reduce the resistance of the channel between the bit line and source diffusions, and the floating gates are surrounded by the other gates in a manner which provides significantly enhanced high voltage coupling to the floating gates from the other gates. The memory cells are substantially smaller than prior art cells, and the array is biased so that all of the memory cells in it can be erased simultaneously, while programming is bit selectable.
Abstract:
Self-aligned split-gate flash memory cell array and process of fabrication in which erase and select gates are positioned on opposite sides of stacked floating and control gates, with source regions in the substrate beneath the erase gates, bit line diffusions which are partially overlapped by select gates at the ends of the rows of the cells. The floating and control gates are self-aligned with each other, and the erase and select gates are split from but self-aligned with the stacked gates. With the floating gates surrounded by the other gates and the source regions, high voltage coupling for both programming and erase operations is significantly enhanced. The memory cells are substantially smaller than prior art cells, and the array is biased so that all of the memory cells in it can be erased simultaneously, while programming is bit selectable.
Abstract:
A method of making bipolar and MOS devices simultaneously using a single fabrication process. In one embodiment of the invention, a silicon substrate is divided into bipolar and MOS regions. A thin layer of gate oxide, having a thickness in the range of from approximately 150 angstroms to 300 angstroms, is thermally grown on the silicon substrate. A thin layer of polycrystalline silicon, having a thickness in the range of from approximately 500 angstroms to 1000 angstroms is deposited on the gate oxide layer to protect the gate oxide layer during subsequent processing. Both the thin polysilicon layer and the gate oxide layer are removed from the bipolar region where the emitter is to be formed. To maintain the integrity of the gate oxide layer during etching, a photoresist mask used during the polysilicon etch is retained during the gate oxide etch, and the gate oxide is etched in a buffered oxide solution. A thick layer of polysilicon then is deposited on the bipolar and MOS regions of the silicon substrate, and the substrate is masked and etched for forming the emitter and gates of the bipolar and MOS devices, respectively.
Abstract:
A process is disclosed for simultaneously fabricating bipolar and complementary field effect transistors. The process includes the fabrication of buried layers 18 doped with both phosphorus and arsenic to permit a shorter diffusion time while simultaneously providing buried layers having low resistance and high diffusivity. The process enables fabrication of BiCMOS structures using only six masks prior to the contact mask.
Abstract:
A method of making bipolar and MOS devices simultaneously using a single fabrication process. In one embodiment of the invention, a silicon substrate is divided into bipolar and MOS regions. A thin layer of gate oxide, having a thickness in the range of from approximately 150 angstroms to 300 angstroms, is thermally grown on the silicon substrate. A thin layer of polycrystalline silicon, having a thickness in the range of from approximately 500 angstroms to 1000 angstroms is deposited on the gate oxide layer to protect the gate oxide layer during subsequent processing. Both the thin polysilicon layer and the gate oxide layer are removed from the bipolar region where the emitter is to be formed. To maintain the integrity of the gate oxide layer during etching, a photoresist mask used during the polysilicon etch is retained during the gate oxide etch, and the gate oxide is etched in a buffered oxide solution. A thick layer of polysilicon then is deposited on the bipolar and MOS regions of the silicon substrate, and the substrate is masked and etched for forming the emitter and gates of the bipolar and MOS devices, respectively.
Abstract:
A process is disclosed for simultaneously fabricating bipolar and complementary field effect transistors. The process enables distinguishing the bipolar devices from the CMOS devices with a single base mask 108, while requiring only a single additional mask 114 to define the bipolar emitter and MOS gates. The process forms the gate oxide 100 for the MOS devices at an early stage, then protects that oxide with polysilicon 103 during subsequent fabrication steps. Self-aligned metal silicide contacts 137 are separated from undesired regions using sidewall oxidation techniques.
Abstract:
NAND flash memory cell array having control gates and charge storage gates stacked in pairs arranged in rows between a bit line diffusion and a common source diffusion, with select gates on both sides of each of the pairs of stacked gates. The gates in each stacked pair are self-aligned with each other, and the charge storage gates are either a nitride or a combination of nitride and oxide. Programming is done by hot electron injection from silicon substrate to the charge storage gates to build up a negative charge in the charge storage gates. Erasing is done by channel tunneling from the charge storage gates to the silicon substrate or by hot hole injection from the silicon substrate to the charge storage gates. The array is biased so that all of the memory cells can be erased simultaneously, while programming is bit selectable.
Abstract:
A flash memory cell is of the type having a substrate of a first conductivity type having a first region of a second conductivity type at a first end, and a second region of the second conductivity type at a second end, spaced apart from the first end, with a channel region between the first end and the second end. The flash memory cell has a plurality of stacked pairs of floating gates and control gates with the floating gates positioned over portions of the channel region and are insulated therefrom, and each control gate over a floating gate and insulated therefrom. The flash memory cell further has a plurality of erase gates over the channel region which are insulated therefrom, with an erase gate between each pair of stacked pair of floating gate and control gate. In a method of erasing the flash memory cell, a pulse of a first positive voltage is applied to alternating erase gates (“first alternating gates”). In addition, a ground voltage is applied to erase gates other than the first alternating gates (“second alternating gates”). In a second method to erase the flash memory cell, a pulse of a first positive voltage is applied to the first alternating gates and a negative voltage is applied to the second alternating gates and to all control gates.
Abstract:
NAND flash memory cell array and fabrication process in which cells having memory gates and charge storage layers are densely packed, with the memory gates in adjacent cells either overlapping or self-aligned with each other. The memory cells are arranged in rows between bit line diffusions and a common source diffusion, with the charge storage layers positioned beneath the memory gates in the cells. The memory gates are either polysilicon or polycide, and the charge storage gates are either a nitride or the combination of nitride and oxide. Programming is done either by hot electron injection from silicon substrate to the charge storage gates to build up a negative charge in the charge storage gates or by hot hole injection from the silicon substrate to the charge storage gates to build up a positive charge in the charge storage gates. Erasure is done by channel tunneling from the charge storage gates to the silicon substrate or vice versa, depending on the programming method. The array is biased so that all of the memory cells can be erased simultaneously, while programming is bit selectable.
Abstract:
NAND flash memory cell array and fabrication process in which cells having memory gates and charge storage layers are densely packed, with the memory gates in adjacent cells either overlapping or self-aligned with each other. The memory cells are arranged in rows between bit line diffusions and a common source diffusion, with the charge storage layers positioned beneath the memory gates in the cells. The memory gates are either polysilicon or polycide, and the charge storage gates are either a nitride or the combination of nitride and oxide. Programming is done either by hot electron injection from silicon substrate to the charge storage gates to build up a negative charge in the charge storage gates or by hot hole injection from the silicon substrate to the charge storage gates to build up a positive charge in the charge storage gates. Erasure is done by channel tunneling from the charge storage gates to the silicon substrate or vice versa, depending on the programming method. The array is biased so that all of the memory cells can be erased simultaneously, while programming is bit selectable.