Abstract:
A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more esters of aromatic dicarboxylic acid internal electron donors; one or more aluminum containing cocatalysts; a selectivity control agent (SCA) comprising at least one silicon containing compound containing at least one C1-10 alkoxy group bonded to a silicon atom, and one or more activity limiting agent (ALA) compounds comprising one or more aliphatic or cycloaliphatic carboxylic acids; alkyl-, cycloalkyl- or alkyl(poly)(oxyalkyl)-(poly)ester derivatives thereof; or inertly substituted derivatives of the foregoing.
Abstract:
A composition comprising a polymerization modifier for the copolymerization of at least one olefin monomer and 1-octene and a polymerization process using the polymerization modifier.
Abstract:
A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more esters of aromatic dicarboxylic acid internal electron donors; one or more aluminum containing cocatalysts; a selectivity control agent (SCA) comprising at least one silicon containing compound containing at least one C1-10 alkoxy group bonded to a silicon atom, and one or more activity limiting agent (ALA) compounds comprising one or more aliphatic or cycloaliphatic carboxylic acids; alkyl-, cycloalkyl- or alkyl(poly)(oxyalkyl)-(poly)ester derivatives thereof; or inertly substituted derivatives of the foregoing.
Abstract:
A method for identifying a catalyst composition for use in the heterogeneous Ziegler-Natta addition polymerization of an olefin monomer, said catalyst composition comprising a procatalyst comprising a magnesium and titanium containing procatalyst and a cocatalyst said method comprising: a) providing a library comprising at least one procatalyst compound, b) forming a catalyst composition library by contacting the member of said procatalyst library with one or more cocatalysts and contacting the resulting mixture with an olefin monomer under olefin polymerization conditions thereby causing the polymerization reaction to take place, c) measuring at least one variable of interest during the polymerization, and d) selecting the catalyst composition of interest by reference to said measured variable.
Abstract:
A process for the polymerization of olefin monomers comprising contacting ethylene or a mixture of ethylene and one or more C4-8 α olefins with a catalyst composition comprising one or more Group 3-10 transition metal containing, Ziegler-Natta, procatalyst compounds; one or more alkylaluminum cocatalyts; and one or more polymerization control agents, said process being characterized in that at least one such polymerization control agent is an alkyl or aryl, ester of an aliphatic or aromatic (poly)carboxylic acid optionally containing one or more substituents comprising a Group 13, 14, 15, or 16 heteroatom.
Abstract:
A compound useful as a cocatalyst or cocatalyst component, especially for use as an addition polymerization catalyst compound, corresponding to the formula: (A*+a)b(Z*J*j)−cd, wherein: A* is a cation of from 1 to 80, preferably 1 to 60 atoms, not counting hydrogen atoms, said A* having a charge +a, Z* is an anion group of from 1 to 50, preferably 1 to 30 atoms, not counting hydrogen atoms, further containing two or more Lewis base sites; J* independently each occurrence is a Lewis acid of from 1 to 80, preferably 1 to 60 atoms, not counting hydrogen atoms, coordinated to at least one Lewis base site of Z*, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acidic functionality, j is a number from 2 to 12 and a, b, c, and d are integers from 1 to 3, with the proviso that a×b is equal to c×d, and provided further that one or more of A*, Z* or J* comprises a hydroxyl group or a polar group containing quiescent reactive functionality.
Abstract:
An improved process for forming bridged Group 4 transition metal complexes using boron trihalide and a magnesium dicyclopentadienyl compound to form a dicyclopentadienyl boron halide intermediate for subsequent metallation or other synthetic use and novel metal complexes.
Abstract:
Group 4 metal complexes comprising a cyclopentaphenanthreneyl ligand, catalytic derivatives thereof and their use as olefin polymerization catalysts, especially for the copolymerization of ethylene and a vinylaromatic monomer are disclosed. The resulting copolymers are uniform, pseudo-random copolymers of ethylene and a vinylaromatic monomer having a cluster index, CIES less than 1.0 and a polymerized vinylaromatic monomer content less than 50 mole percent.
Abstract:
A process for preparing homopolymers and copolymers of addition polymerizable monomers, or mixtures of such monomers, and the resulting polymer, wherein the process comprising contacting said monomer or mixture under high monomer conversion polymerization conditions with a catalyst composition comprising: a) a catalyst system comprising a Group 3-10 metal complex; and c) a silane, or hydrocarbylsilane corresponding to the formula: JjSiH4−j or AnJjSiH4-(n+j) wherein: J is C1-40 hydrocarbyl, A is a C2-20 alkenyl group, n is 1 or 2, and j is 0 or 1; wherein the polymer comprises from 0.1 to 100 long chain branches per 10,000 carbons, and at least some of which comprise a silane branching center.
Abstract:
Disclosed is a process for preparing bridged Group 4 metal complexes containing a neutral diene ligand starting from the corresponding novel, metal diene containing complexes by reaction thereof with the divalent derivative of a bridged bidentate ligand compound. The novel, intermediate metal diene complexes, their formation from tetravalent metal salts and an integrated process combining both process steps are claimed.