摘要:
A method of forming a semiconductor device includes: forming a channel of a field effect transistor (FET) in a substrate; forming a heavily doped region in the substrate; and forming recesses adjacent the channel and the heavily doped region. The method also includes: forming an undoped or lightly doped intermediate layer in the recesses on exposed portions of the channel and the heavily doped region; and forming source and drain regions on the intermediate layer such that the source and drain regions are spaced apart from the heavily doped region by the intermediate layer.
摘要:
Disclosed are embodiments of a semiconductor structure that incorporates multiple nitride layers stacked between the center region of a device and a blanket oxide layer. These nitride layers are more thermally conductive than the blanket oxide layer and, thus provide improved heat dissipation away from the device. Also disclosed are embodiments of a method of forming such a semiconductor structure in conjunction with the formation of any of the following nitride layers during standard processing of other devices: a nitride hardmask layer (OP layer), a “sacrificial” nitride layer (SMT layer), a tensile nitride layer (WN layer) and/or a compressive nitride layer (WP layer). Optionally, the embodiments also incorporate incomplete contacts that extend through the blanket oxide layer into one or more of the nitride layers without contacting the device in order to further improve heat dissipation.
摘要:
A plurality of gate structures are formed on a substrate. Each of the gate structures includes a first gate electrode and source and drain regions. The first gate electrode is removed from each of the gate structures. A first photoresist is applied to block gate structures having source regions in a source-down direction. A first halo implantation is performed in gate structures having source regions in a source-up direction at a first angle. The first photoresist is removed. A second photoresist is applied to block gate structures having source regions in a source-up direction. A second halo implantation is performed in gate structures having source regions in a source-down direction at a second angle. The second photoresist is removed. Replacement gate electrodes are formed in each of the gate structures.
摘要:
Solutions for forming an extremely thin semiconductor-on-insulator (ETSOI) layer are disclosed. In one embodiment, a method includes providing a wafer including a plurality of semiconductor-on-insulator (SOI) layer regions separated by at least one shallow trench isolation (STI); amorphizing the plurality of SOI layer regions by implanting the plurality of SOI layer regions with an implant species; and removing a portion of the amorphized SOI layer region to form at least one recess in the amorphized SOI layer region.
摘要:
Structures and methods are provided for nanosecond electrical pulse anneal processes. The method of forming an electrostatic discharge (ESD) N+/P+ structure includes forming an N+ diffusion on a substrate and a P+ diffusion on the substrate. The P+ diffusion is in electrical contact with the N+ diffusion. The method further includes forming a device between the N+ diffusion and the P+ diffusion. A method of annealing a structure or material includes applying an electrical pulse across an electrostatic discharge (ESD) N+/P+ structure for a plurality of nanoseconds.
摘要翻译:为纳秒电脉冲退火工艺提供了结构和方法。 形成静电放电(ESD)N + / P +结构的方法包括在衬底上形成N +扩散和在衬底上形成P +扩散。 P +扩散与N +扩散电接触。 该方法还包括在N +扩散和P +扩散之间形成器件。 退火结构或材料的方法包括跨多个纳秒的静电放电(ESD)N + / P +结构施加电脉冲。
摘要:
Field effect transistor and methods of fabricating field effect transistors. The field effect transistors includes: a semiconductor substrate; a silicon oxide layer on the substrate; a stiffening layer on the silicon oxide layer; a single crystal silicon layer on the stiffening layer; a source and a drain on opposite sides of a channel region of the silicon layer; a gate electrode over the channel region and a gate dielectric between the gate electrode and the channel region.
摘要:
Disclosed herein are various methods and structures using contacts to create differential stresses on devices in an integrated circuit (IC) chip. An IC chip is disclosed having a p-type field effect transistor (PFET) and an n-type field effect transistor (NFET). One embodiment of this invention includes creating this differential stress by varying the deposition conditions for forming PFET and NFET contacts, for example, the temperature at which the fill materials are deposited, and the rate at which the fill materials are deposited. In another embodiment, the differential stress is created by filling the contacts with differing materials that will impart differential stress due to differing coefficient of thermal expansions. In another embodiment, the differential stress is created by including a silicide layer within the NFET contacts and/or the PFET contacts.
摘要:
A structure, a FET, a method of making the structure and of making the FET. The structure including: a silicon layer on a buried oxide (BOX) layer of a silicon-on-insulator substrate; a trench in the silicon layer extending from a top surface of the silicon layer into the silicon layer, the trench not extending to the BOX layer, a doped region in the silicon layer between and abutting the BOX layer and a bottom of the trench, the first doped region doped to a first dopant concentration; a first epitaxial layer, doped to a second dopant concentration, in a bottom of the trench; a second epitaxial layer, doped to a third dopant concentration, on the first epitaxial layer in the trench; and wherein the third dopant concentration is greater than the first and second dopant concentrations and the first dopant concentration is greater than the second dopant concentration.
摘要:
A method of forming a semiconductor structure includes: forming a resistor over a substrate; forming at least one first contact in contact with the resistor; and forming at least one second contact in contact with the resistor. The resistor is structured and arranged such that current flows from the at least one first contact to the at least one second contact through a central portion of the resistor. The resistor includes at least one extension extending laterally outward from the central portion in a direction parallel to the current flow. The method includes sizing the at least one extension based on a thermal diffusion length of the resistor.
摘要:
A method of forming a semiconductor structure includes: forming a resistor over a substrate; forming at least one first contact in contact with the resistor; and forming at least one second contact in contact with the resistor. The resistor is structured and arranged such that current flows from the at least one first contact to the at least one second contact through a central portion of the resistor. The resistor includes at least one extension extending laterally outward from the central portion in a direction parallel to the current flow. The method includes sizing the at least one extension based on a thermal diffusion length of the resistor.