Abstract:
A system includes a transmitter, a receiver, a isolation barrier, and a fuse. The isolation barrier is connected to the transmitter. The fuse is connected between the isolation barrier and the receiver. The isolation barrier prevents current flow from the transmitter to the receiver when a voltage across the isolation barrier is less than a first breakdown voltage. The isolation barrier short circuits when the voltage across the isolation barrier is greater than or equal to the first breakdown voltage. The fuse opens when the isolation barrier short circuits. When open, the fuse has a second breakdown voltage that is greater than the first breakdown voltage.
Abstract:
A system includes a transmitter, a receiver, a isolation barrier, and a fuse. The isolation barrier is connected to the transmitter. The fuse is connected between the isolation barrier and the receiver. The isolation barrier prevents current flow from the transmitter to the receiver when a voltage across the isolation barrier is less than a first breakdown voltage. The isolation barrier short circuits when the voltage across the isolation barrier is greater than or equal to the first breakdown voltage. The fuse opens when the isolation barrier short circuits. When open, the fuse has a second breakdown voltage that is greater than the first breakdown voltage.
Abstract:
A driver and capacitance measuring circuit includes a voltage source that selectively generates an output voltage at a first node during a driver mode to alter a capacitance of a device that is connected to the first node and that has a variable capacitance. A current source selectively provides one of a charging and discharging current at the first node during a measurement mode. A capacitance calculating circuit samples a voltage at the first node during the measurement node, determines a voltage change rate of the first node during the measurement mode and calculates the capacitance of the device based on the voltage change rate and a value of the one of the charging and discharging current.
Abstract:
A method is disclosed for controlling the write head of a magnetic disk storage device. The method includes sinking current from the first terminal of the write head and sourcing current to the second terminal of the write head substantially simultaneously with sinking current from the first terminal so that a first steady state voltage level appears on the first terminal of the write head and a second steady state voltage level appears on the second terminal thereof that are approximately at a midpoint between a high reference voltage level and a low reference voltage level. The common mode voltage of the write head is substantially constant over time.
Abstract:
An apparatus (and method) is provided that reduces thermal interference in the read signal of a disk drive. A variable or programmable resistance is used to change the transfer function of a filter in the read channel of the disk drive to filter the read signal. The filter has a first transfer function (first cut-off frequency) related to the programmed resistance during normal operation of the disk drive (i.e. when thermal interference is not detected). When thermal interference is detected in the read signal, the resistance is programmed to another value resulting in the filter having a second transfer function (second cut-off frequency). The resistance element includes a transconductance amplifier whose transconductance is variable or programmable to different values resulting in different programmable transfer functions (or one of a multitude of cut-off frequencies) for the filter. In the preferred embodiment, detection of thermal interference increases the cut-off frequency of the filter thereby filtering, or reducing the effects of, the thermal interference in the read signal.
Abstract:
A BiCMOS transconductor differential stage for high frequency filters includes an input circuit portion having signal inputs and a pair of MOS transistors having their respective gate terminals corresponding to the signal inputs. The differential stage has an output circuit portion having signal outputs and a pair of bipolar transistors connected together with a common base inserted between the inputs and the outputs in a cascode configuration. The differential stage includes a switching device associated with at least one of the bipolar transistors to change the connections between parasitic capacitors present in the differential stage. The switching device also has at least one added bipolar transistor connected in a removable manner in parallel with the corresponding bipolar cascode transistor. In a variant differential stage, there are also provided respective added MOS transistors connected in parallel with the MOS transistors of the input circuit portion to change the ratio W:L of each of the MOS transistors.
Abstract:
A decoder of a coded serial stream of digital data in a stream of decoded NRZ data has re-timing (BB, AA) flip-flops and a 2.times.1 multiplexer (MUX OUT) selectably providing a single-bit NRZ output stream or a dual-bit (NRZ0 and NRZ1) output streams, by exploiting the predecoded values (ND0 and ND1) produced by two decoding combinative logic networks (RC1 and RC2) that compose the decoder.
Abstract:
A transconductor stage for high-frequency filters of a type which comprises an input circuit portion having signal inputs and an output circuit portion, incorporates a pair of field-effect transistors having respective gate and source terminals in common, and has the output portion formed of a pair of bipolar transistors connected to the aforesaid field-effect transistors.
Abstract:
An integrated circuit (IC) includes first and second resonator circuits and an isolation barrier. The first resonator circuit includes first and second inductors, wherein the first resonator circuit is connected to a supply voltage. The second resonator circuit includes third and fourth inductors, wherein the second resonator circuit is matched to the first resonator circuit. The isolation barrier separates the first and second resonator circuits. The first and second inductors are inductively coupled to the third and fourth inductors, respectively, thereby providing for transfer of power from the first resonator circuit across the isolation barrier to the second resonator circuit.
Abstract:
An integrated circuit (IC) includes first and second resonator circuits and an isolation barrier. The first resonator circuit includes first and second inductors, wherein the first resonator circuit is connected to a supply voltage. The second resonator circuit includes third and fourth inductors, wherein the second resonator circuit is matched to the first resonator circuit. The isolation barrier separates the first and second resonator circuits. The first and second inductors are inductively coupled to the third and fourth inductors, respectively, thereby providing for transfer of power from the first resonator circuit across the isolation barrier to the second resonator circuit.