Abstract:
A copper interconnect includes a copper layer formed in a dielectric layer. A liner is formed between the copper layer and the dielectric layer. A barrier layer is formed at the boundary between the liner and the dielectric layer. The barrier layer is a metal oxide.
Abstract:
A method of testing a wafer after a current top layer is formed over the wafer. Stress data is collected for the wafer after forming the current top layer. The stress data is derived from changes in wafer curvature. The stress data includes: stress-xx in an x direction and stress-yy in a y direction for each area of a set of finite areas on the wafer, the stress-xx and stress-yy both being derived from wafer-curvature-change-xx in the x direction for each area of the set of finite areas and from wafer-curvature-change-yy in the y direction for each area of the set of finite areas; and the stress-xy being derived from wafer-curvature-change-xy, wherein wafer-curvature-change-xy is a change in wafer twist in the x-y plane for each area of the set of finite areas. A stress gradient vector (and/or its norm) is calculated and used to evaluate the investigating single or multiple accumulated layer.
Abstract:
A method of forming an integrated circuit structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form a seed layer in a first chamber; and performing a first etch step to remove a portion of the seed layer. The method may further include performing a second deposition step to increase the thickness of the seed layer. At least one of the first etch step and the second deposition step is performed in a second chamber different from the first chamber.
Abstract:
A method of forming a seed layer of an interconnect structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form the seed layer; and in-situ performing a first etch step to remove a portion of the seed layer. The method may further includes additional deposition and etch steps for forming the seed layer.
Abstract:
A composite barrier layer provides superior barrier qualities and superior adhesion properties to both dielectric materials and conductive materials as the composite barrier layer extends throughout the semiconductor device. The composite barrier layer may be formed in regions where it is disposed between two conductive layers and in regions where it is disposed between a conductive layer and a dielectric material. The composite barrier layer may consist of various pluralities of layers and the arrangement of layers that form the composite barrier layer may differ as the barrier layer extends throughout different sections of the device. Amorphous layers of the composite barrier layer are generally disposed to form boundaries with dielectric materials and crystalline layers are generally disposed to form boundaries with conductive materials such as interconnect materials.
Abstract:
A semiconductor device having a nonconductive cap layer comprising a first metal element. The nonconductive cap layer comprises a first metal nitride, a first metal oxide, or a first metal oxynitride over conductive lines and an insulating material between the conductive lines. An interface region may be formed over the top surface of the conductive lines, the interface region including the metal element of the cap layer. The cap layer prevents the conductive material in the conductive lines from migrating or diffusing into adjacent subsequently formed insulating material layers. The cap layer may also function as an etch stop layer.
Abstract:
A method for avoiding plasma arcing during a reactive ion etching (RIE) process including providing a semiconductor wafer having a process surface for depositing a dielectric insulating layer; depositing at least a portion of a dielectric insulating layer to form a deposition layer according to plasma assisted chemical vapor deposition (CVD) process; treating the deposition layer portion with a hydrogen plasma treatment to reduce an electrical charge nonuniformity of the deposition layer including applying a biasing power to the semiconductor wafer; and, carrying out a subsequent reactive ion etching process.
Abstract:
An opening in a dielectric layer having a unique barrier layer structure is provided. In an embodiment, the opening is a via and a trench. The barrier layer, which may comprise one or more barrier layers, is formed such that the ratio of the thickness of the barrier layers along a sidewall approximately midway between the bottom of the trench and the top of the dielectric layer to the thickness of the barrier layers along the bottom of the trench is greater than about 0.55. In another embodiment, the ratio of the thickness of the barrier layers along a sidewall approximately midway between the bottom of the trench and the top of the dielectric layer to the thickness of the barrier layers along the bottom of the via is greater than about 1.0. An underlying conductive layer may be recessed.
Abstract:
An opening in a dielectric layer having a unique barrier layer structure is provided. In an embodiment, the opening is a via and a trench. The barrier layer, which may comprise one or more barrier layers, is formed such that the ratio of the thickness of the barrier layers along a sidewall approximately midway between the bottom of the trench and the top of the dielectric layer to the thickness of the barrier layers along the bottom of the trench is greater than about 0.55. In another embodiment, the ratio of the thickness of the barrier layers along a sidewall approximately midway between the bottom of the trench and the top of the dielectric layer to the thickness of the barrier layers along the bottom of the via is greater than about 1.0. An underlying conductive layer may be recessed.
Abstract:
A composite barrier layer provides superior barrier qualities and superior adhesion properties to both dielectric materials and conductive materials as the composite barrier layer extends throughout the semiconductor device. The composite barrier layer may be formed in regions where it is disposed between two conductive layers and in regions where it is disposed between a conductive layer and a dielectric material. The composite barrier layer may consist of various pluralities of layers and the arrangement of layers that form the composite barrier layer may differ as the barrier layer extends throughout different sections of the device. Amorphous layers of the composite barrier layer are generally disposed to form boundaries with dielectric materials and crystalline layers are generally disposed to form boundaries with conductive materials such as interconnect materials.