Abstract:
An engine control module comprises a torque control module, an engine speed (RPM) control module, and an actuator module. The torque control module determines a first desired torque based on a requested torque. The RPM control module selectively determines a second desired torque based on a desired RPM. The torque control module determines the first desired torque further based on the second desired torque when the engine control module is transitioning from an RPM control mode to a torque control mode. The RPM control module determines the second desired torque further based on the first desired torque when the engine control module is transitioning from the torque control mode to the RPM control mode. The actuator module controls an actuator of an engine based on the first and second desired torques.
Abstract:
A cold-start control system for an internal combustion engine includes a heat estimation module, a torque request module and a propulsion torque determination module. The heat estimation module determines an exhaust system temperature and estimates heat required to heat an exhaust system to a predetermined temperature. The torque request module generates a torque request based on the estimated heat. The propulsion torque determination module determines a desired engine torque based on the torque request.
Abstract:
A torque control system comprises a torque correction factor module, a RPM-torque transition module, and a selection module. The torque correction factor module determines a first torque correction factor and a second torque correction factor. The RPM-torque transition module stores the first torque correction factor. The selection module selectively outputs one of the first torque correction factor and the second torque correction factor based on a control mode of the torque control system.
Abstract:
An engine control system includes a power module, an air flow module, a torque estimation module, and an air control module. The power module determines a power-based torque based on a desired engine speed. The air flow module determines an air flow value based on the power-based torque. The torque estimation module estimates a desired torque based on the air flow value. The air control module selectively determines a throttle area based on the desired torque. A throttle valve is actuated based on the throttle area.
Abstract:
An engine control system comprises a clutch cut off enable module and a torque control module. The clutch cut off enable module generates an enable signal based on a clutch engagement signal and an accelerator pedal signal. The torque control module reduces a spark advance of an engine to a minimum value and disables fueling of cylinders of the engine based on the enable signal. The minimum value is a minimum allowed spark advance for current engine airflow.
Abstract:
An engine control system comprises a pedal torque determination module, a driver interpretation module, and an actuation module. The pedal torque determination module determines a zero pedal torque based on a desired engine torque at a zero accelerator pedal position and a minimum torque limit for an engine system. The driver interpretation module determines a driver pedal torque based on the zero pedal torque and an accelerator pedal position. The actuation module controls at least one of a throttle area, spark timing, and a fuel command based on the driver pedal torque.
Abstract:
An engine control system comprises a torque control module, an air conditioning (A/C) load comparison module, and an A/C load compensation module. The torque control module controls an engine to produce a first torque request based on a first torque maintains a current speed of the engine. The A/C load comparison module compares a transient load to a difference between a torque available to the engine and the first torque request. The A/C load compensation module selectively increases the first torque request prior to a clutch engagement based on the comparison.
Abstract:
A torque control system comprises a torque correction factor module, a RPM-torque transition module, and a selection module. The torque correction factor module determines a first torque correction factor and a second torque correction factor. The RPM-torque transition module stores the first torque correction factor. The selection module selectively outputs one of the first torque correction factor and the second torque correction factor based on a control mode of the torque control system.
Abstract:
An engine control module comprises a base reserve module, a power steering reserve module, a reserve torque module, first and second engine actuator modules, and an engine speed control module. The base reserve module determines a base reserve torque. The power steering reserve module determines a power steering reserve torque. The reserve torque module determines a first reserve torque based on the base reserve torque, the power steering reserve torque, and at least one of an oil temperature of an engine and a barometric pressure. The first and second engine actuator modules control first and second actuators of the engine, respectively. The engine speed control module instructs the first engine actuator module to produce a first torque output from the engine and instructs the second engine actuator module to produce a second torque output from the engine.
Abstract:
A method of torque-based control for an internal combustion engine may include determining a desired airflow rate into an intake manifold of the internal combustion engine during an engine start condition, determining a torque limit for a torque-based engine control module based on the desired airflow rate, and regulating engine torque based on the determined torque limit.