Abstract:
Method of making a polymer matrix composite comprising a porous polymeric network structure; and a plurality of particles distributed within the polymeric network structure, the method comprising: combining a thermoplastic polymer, a solvent that the thermoplastic polymer is soluble in, and a plurality of particles to provide a slurry; forming the slurry in to an article; heating the article in an environment to retain at least 90 percent by weight of the solvent, based on the weight of the solvent in the slurry, and inducing phase separation of the thermoplastic polymer from the solvent to provide the polymer matrix composite.
Abstract:
An article is described such as a tape or sheet, comprising a PLA-based film and a layer of (e.g. pressure sensitive) adhesive disposed on the film. The PLA-based film comprises a semicrystalline polylactic acid polymer; a second polymer such as polyvinyl acetate polymer having a glass transition temperature (Tg) of at least 25° C.; and plasticizer. The tape or sheet may further comprises a low adhesion backsize or a release liner. The article can be suitable for various end-uses. In one embodiment, the tape is a paint masking tape. In another embodiment, the tape is a floor marking tape.
Abstract:
The present disclosure relates to polymer composites that include a thermoplastic polymer, network structure and a soft, ferromagnetic particulate material. The polymer composites may be used, for example, as magnetic flux field directional materials. The present invention also relates to methods of making the polymer composites, e.g. polymer composite sheets, of the present disclosure. In one embodiment, the present disclosure provides a polymer composite including a thermoplastic polymer, network structure; and a soft, ferromagnetic particulate material distributed within the thermoplastic polymer, network structure. The weight fraction of soft, ferromagnetic particulate material may be between 0.80 and 0.98, based on the total weight of the polymer composite and/or the thermoplastic polymer may have a number average molecular weight between 5×104 g/mol to 5×107 g/mol.
Abstract:
Multilayer articles include a fibrous web and a barrier film directly bonded to the fibrous web; wherein the fibrous web includes fibers that include natural fibers, synthetic fibers, or combinations thereof; wherein the synthetic fibers comprise a synthetic thermoplastic polymer selected from an aliphatic polyester, an aromatic polyester, a polyamide, and combinations thereof; and wherein the barrier film includes a thermoplastic aliphatic polyester, a polyvinyl alkanoate polymer having a Tg of no greater than 70 C; and a non-lactide plasticizer having an acid number of no greater than 10 and having a weight average molecular weight of no greater than 5000 g/mol.
Abstract:
The present disclosure provides methods for forming asymmetric membranes. More specifically, methods are provided for applying a polymerizable species to a porous substrate for forming a coated porous substrate. The coated porous substrate is exposed to an ultraviolet radiation source having a peak emission wavelength less than 340 nm to polymerize the polymerizable species forming a polymerized material retained within the porous substrate so that the concentration of polymerized material is greater at the first major surface than at the second major surface.
Abstract:
Articles are described including a first microfiltration membrane layer having a first major surface and a second major surface disposed opposite the first major surface, and a first silica layer directly attached to the first major surface of the first microfiltration membrane layer. The first silica layer includes a polymeric binder and acid-sintered interconnected silica nanoparticles arranged to form a continuous three-dimensional porous network. A method of making an article is also described, including providing a first microfiltration membrane layer having a first major surface and a second major surface disposed opposite the first major surface, and forming a first silica layer on the first major surface.
Abstract:
A porous membrane that includes a first zone, the first zone including a crystallizable polymer; and a first nucleating agent, the first nucleating agent having a first concentration in the first zone, the first zone having a first average pore size; and a second zone, the second zone including a crystallizable polymer; and a second nucleating agent, the second nucleating agent having a second concentration in the second zone, the second zone having a second average pore size, wherein the crystallizable polymer is the same in the first zone and second zone, wherein the first average pore size is not the same as the second average pore size, wherein the first nucleating agent and the second nucleating agent are the same or different, wherein the first concentration and the second concentration agent are the same or different and with the proviso that the first nucleating agent and the first concentration are not the same as the second nucleating agent and the second concentration. Methods of making membranes are also disclosed.
Abstract:
A polymer matrix composite comprising a porous polymeric network; and a plurality of functional particles distributed within the polymeric network structure, and wherein the polymer matrix composite has an air flow resistance at 25° C., as measured by the “Air Flow Resistance Test,” of less than 300 seconds/50 cm3/500 micrometers; and wherein the polymer matrix composite has a density of at least 0.3 g/cm3; and methods for making the same. The polymer matrix composites are useful, for example, as filters.
Abstract:
A film includes a polymeric material and a plurality of particles dispersed therein. The polymeric material includes a plurality of elongate polymeric elements oriented along substantially a same first direction and interconnecting the particles. A ratio of a volume of the plurality of particles to a volume of the polymeric material is at least 5. An elongate portion of at least a first elongate polymeric element in the plurality of elongate polymeric elements may conform to and be bonded to a first particle in the plurality of particles along an entire length of the elongate portion. The first elongate polymeric element may extend from the elongate portion at least to a second particle in the plurality of particles.
Abstract:
A magnetic shielding film includes opposing first and second major surfaces and a plurality of particles dispersed therebetween, each particle having a magnetic permeability, a thickness H along a thickness direction of the particle, and a longest dimension L along a length direction of the particle orthogonal to the thickness direction, L/H greater than or equal to 2, the particles defining a plurality of voids therebetween, the length directions of at least 60% of the particles oriented within 5.5 degrees of a same orientation direction.