Abstract:
A circuit may include a queue, a monitor, and a controller. The queue may receive and store a plurality of commands from a plurality of buses to access a shared set of registers. The monitor may monitor the plurality of commands in the queue to determine whether a period of time needs to be reserved for selected commands from one of the plurality of buses. The controller, if the period of time needs to be reserved, based on the period of time determined by the monitor, may disable acceptance of commands from buses other than the one of the plurality of buses, may execute the selected commands for the one of the plurality of buses, and may allow more than one of the plurality of buses access to results of the selected commands.
Abstract:
This disclosure relates to a distributed processing system for configuring multiple processing channels. The distributed processing system includes a main processor, such as an ARM processor, communicatively coupled to a plurality of co-processors, such as stream processors. The co-processors can execute instructions in parallel with each other and interrupt the ARM processor. Longer latency instructions can be executed by the main processor and lower latency instructions can be executed by the co-processors. There are several ways that a stream can be triggered in the distributed processing system. In an embodiment, the distributed processing system is a stream processor system that includes an ARM processor and stream processors configured to access different register sets. The stream processors can include a main stream processor and stream processors in respective transmit and receive channels. The stream processor system can be implemented in a radio system to configure the radio for operation.
Abstract:
Apparatus and methods for control and calibration of tunable filters are provided. In certain embodiments, a tunable filter includes at least one controllable component (for instance, a controllable inductor or a controllable capacitor) having a value that changes or adjusts a center frequency of the tunable filter. For example, the controllable component can correspond to a controllable inductor or a controllable capacitor of an inductor-capacitor (LC) resonator of the tunable filter. The tunable filter further includes a control circuit implemented with an approximation function for estimating a value of the controllable component for achieving a desired center frequency indicated by a frequency control signal.
Abstract:
This disclosure relates to a distributed processing system for configuring multiple processing channels. The distributed processing system includes a main processor, such as an ARM processor, communicatively coupled to a plurality of co-processors, such as stream processors. The co-processors can execute instructions in parallel with each other and interrupt the ARM processor. Longer latency instructions can be executed by the main processor and lower latency instructions can be executed by the co-processors. There are several ways that a stream can be triggered in the distributed processing system. In an embodiment, the distributed processing system is a stream processor system that includes an ARM processor and stream processors configured to access different register sets. The stream processors can include a main stream processor and stream processors in respective transmit and receive channels. The stream processor system can be implemented in a radio system to configure the radio for operation.
Abstract:
Apparatus and methods for phase synchronization of phase-locked loops (PLLs) are provided. In certain configurations, an RF communication system includes a PLL that generates one or more output clock signals and a phase synchronization circuit that synchronizes a phase of the PLL. The phase synchronization circuit includes a sampling circuit that generates samples by sampling the one or more output clock signals based on timing of a reference clock signal. Additionally, the phase synchronization circuit includes a phase difference calculation circuit that generates a phase difference signal based on the samples and a tracking digital phase signal representing the phase of the PLL. The phase synchronization circuit further includes a phase adjustment control circuit that provides a phase adjustment to the PLL based on the phase difference signal so as to synchronize the PLL.
Abstract:
A method and apparatus for phase adjustment of a RF transceiver is disclosed. Based on a first local oscillator signal and a second local oscillator signal, a beat signal that indicates the frequency and phase relationship between the first and second local oscillator signals can be generated. Using the beat signal, changing phase relationship between the first and second local oscillator signals can be cumulatively taken account for using phase averaging to allow quick restoration to observation of a previously observed channel.
Abstract:
A system and method provide for calibrating the frequency response of an electronic filter. The system and method include a radio transmitter with both in-phase and quadrature baseband paths. Each baseband path includes a numerically controlled oscillator (“NCO”), a digital signal path, a digital-to-analog converter (“DAC”), and an analog filter. A low frequency tone is applied from the NCO from one of the baseband path, while a high frequency tone is applied from the NCO in the other baseband path. An analog peak detector at output determines which analog filter has the largest amplitude at the output. The peak detector offset between the two analog filters is offset by stimulating the in-phase and quadrature baseband paths with the respective NCOs to find an amplitude difference between the output signals from the NCOs that makes the output of the analog filters the same. Calibration is then performed on the corner frequency and filter peaking through respective stimulation of the in-phase and quadrature baseband paths. The system and method is advantageous as it allows for very accurate calibration of both the filter corner frequency and peaking during a standard transmission operating mode with little additional hardware required.