Abstract:
A system and method provide for calibrating the frequency response of an electronic filter. The system and method include a radio transmitter with both in-phase and quadrature baseband paths. Each baseband path includes a numerically controlled oscillator (“NCO”), a digital signal path, a digital-to-analog converter (“DAC”), and an analog filter. A low frequency tone is applied from the NCO from one of the baseband path, while a high frequency tone is applied from the NCO in the other baseband path. An analog peak detector at output determines which analog filter has the largest amplitude at the output. The peak detector offset between the two analog filters is offset by stimulating the in-phase and quadrature baseband paths with the respective NCOs to find an amplitude difference between the output signals from the NCOs that makes the output of the analog filters the same. Calibration is then performed on the corner frequency and filter peaking through respective stimulation of the in-phase and quadrature baseband paths. The system and method is advantageous as it allows for very accurate calibration of both the filter corner frequency and peaking during a standard transmission operating mode with little additional hardware required.
Abstract:
Apparatus and methods for phase synchronization of phase-locked loops (PLLs) are provided. In certain configurations, an RF communication system includes a PLL that generates one or more output clock signals and a phase synchronization circuit that synchronizes a phase of the PLL. The phase synchronization circuit includes a sampling circuit that generates samples by sampling the one or more output clock signals based on timing of a reference clock signal. Additionally, the phase synchronization circuit includes a phase difference calculation circuit that generates a phase difference signal based on the samples and a tracking digital phase signal representing the phase of the PLL. The phase synchronization circuit further includes a phase adjustment control circuit that provides a phase adjustment to the PLL based on the phase difference signal so as to synchronize the PLL.
Abstract:
A transmission module is provided that includes a transmitter, a loopback receiver, and a QEC controller. In a first state, the QEC controller calibrates the loopback receiver to remove quadrature imbalance in the loopback receiver. In a second state, a communication pathway is provided between the transmitter and the loopback receiver, and the QEC controller identifies quadrature imbalance in the transmitter based at least one a comparison of the data signals at the output of the loopback receiver with data signals at the input of the transmitter. Based on the comparison, the QEC controller can adjust one or more characteristics of the transmitter to correct quadrature errors in the transmitter.
Abstract:
A transmission module is provided that includes a transmitter, a loopback receiver, and a QEC controller. In a first state, the QEC controller calibrates the loopback receiver to remove quadrature imbalance in the loopback receiver. In a second state, a communication pathway is provided between the transmitter and the loopback receiver, and the QEC controller identifies quadrature imbalance in the transmitter based at least one a comparison of the data signals at the output of the loopback receiver with data signals at the input of the transmitter. Based on the comparison, the QEC controller can adjust one or more characteristics of the transmitter to correct quadrature errors in the transmitter.
Abstract:
Embodiments of the present disclosure relate to cellular technology applications of beamforming performed in the digital domain. In one aspect, an RF system for performing digital beamforming on a per-carrier basis is disclosed, where different phase and/or amplitude adjustments are applied to signals of different frequency ranges (i.e., to different carrier signals). In another aspect, an RF system for performing digital beamforming on a per-antenna basis is disclosed, where different phase and/or amplitude adjustments are applied to signals transmitted from or received by different antennas. In some embodiments, an RF system may be configured to implement both digital beamforming on a per-carrier basis and digital beamforming on a per-antenna basis. The RF systems disclosed herein allow implementing programmable beamforming in the digital domain in a manner that is significantly less complex than conventional implementations.
Abstract:
Apparatus and methods for calibrating radio frequency transmitters to compensate for common mode local oscillator leakage are provided herein. In certain configurations herein, a transmitter generates a radio frequency transmit signal based on mixing a baseband input signal with a local oscillator signal. The transmitter is calibrated to compensate for common mode local oscillator leakage. Thus, a common mode component of the local oscillator signal is reduced or eliminated from the radio frequency transmit signal, which provides a number of benefits, including lower levels of undesired emissions from the transmitter.
Abstract:
Apparatus and methods for phase synchronization of phase-locked loops (PLLs) are provided. In certain configurations, an RF communication system includes a PLL that generates one or more output clock signals and a phase synchronization circuit that synchronizes a phase of the PLL. The phase synchronization circuit includes a sampling circuit that generates samples by sampling the one or more output clock signals based on timing of a reference clock signal. Additionally, the phase synchronization circuit includes a phase difference calculation circuit that generates a phase difference signal based on the samples and a tracking digital phase signal representing the phase of the PLL. The phase synchronization circuit further includes a phase adjustment control circuit that provides a phase adjustment to the PLL based on the phase difference signal so as to synchronize the PLL.
Abstract:
A transmission module is provided that includes a transmitter, a loopback receiver, and a QEC controller. The QEC controller identifies quadrature imbalance in the transmitter based at least one a comparison of the data signals at the output of the loopback receiver with data signals at the input of the transmitter. Based on the comparison, the QEC controller can adjust one or more characteristics of the transmitter to correct quadrature errors in the transmitter.
Abstract:
Apparatus and methods for phase synchronization of phase-locked loops (PLLs) are provided. In certain configurations, an RF communication system includes a PLL that generates one or more output clock signals and a phase synchronization circuit that synchronizes a phase of the PLL. The phase synchronization circuit includes a sampling circuit that generates samples by sampling the one or more output clock signals based on timing of a reference clock signal. Additionally, the phase synchronization circuit includes a phase difference calculation circuit that generates a phase difference signal based on the samples and a tracking digital phase signal representing the phase of the PLL. The phase synchronization circuit further includes a phase adjustment control circuit that provides a phase adjustment to the PLL based on the phase difference signal so as to synchronize the PLL.
Abstract:
A method and apparatus for phase adjustment of a RF transceiver is disclosed. Based on a first local oscillator signal and a second local oscillator signal, a beat signal that indicates the frequency and phase relationship between the first and second local oscillator signals can be generated. Using the beat signal, changing phase relationship between the first and second local oscillator signals can be cumulatively taken account for using phase averaging to allow quick restoration to observation of a previously observed channel.