Abstract:
A system and method for efficiently storing and driving data between pipeline stages. In various embodiments, a flip-flop circuit includes a bypass circuit, which is a tri-state inverter, and the bypass circuit receives a clock signal and a version of a data signal. When the clock signal received by the flip-flop circuit is asserted, the output of the bypass circuit is sent as the output of the flip-flop circuit. In one example, the version of the data signal received by the bypass circuit is the data signal. In another example, the version of the data signal received by the bypass circuit is the output of a master latch. Although the output of the master latch is pre-charged, when the clock is asserted, each of a late arriving rising and falling data transition are included in the critical path of the flip-flop circuit.
Abstract:
A method and apparatus for controlling a power switch are disclosed. A power switch may be coupled between a power supply signal and a virtual power supply signal coupled to a circuit block. The power switch may be configured to couple the power supply signal to the virtual power supply signal based on a first control signal, and reduce a voltage level of the virtual power supply signal to a voltage level less than a voltage level of the power supply signal based on a second control signal. The power switch may be further configured to change a current flowing from the power supply signal to the virtual power supply signal based on a third control signal.
Abstract:
Embodiments of a method that may allow for selectively tuning a delay of individual logic paths within a custom circuit or memory are disclosed. Circuitry may be configured to monitor a voltage level of a power supply coupled to the custom circuit or memory. A delay amount of a delay unit within the custom circuit or memory may be changed in response to a determination that the voltage level of the power supply has changed.
Abstract:
An apparatus for modifying a voltage level of a memory array power supply is disclosed. A first column may include a first plurality of data storage cells coupled to a first local power supply signal and a second column may include a second plurality of data storage cells coupled to a second local power supply signal. A first switch may be configured to selectively coupled the first local power supply signal to either a first power signal or a second power supply signal dependent upon a value of a first selection signal, and a second switch may be configured to selectively couple the second local power supply signal to either the first power supply signal or the second power supply signal dependent upon a value of a second selection signal.
Abstract:
A system including control logic, a voltage reference, a sense amplifier, and a voltage supply circuit is presented. The sense amplifier may be configured to detect a current state of the voltage supply circuit output compared to the reference voltage. The voltage supply circuit may be configured to capture and preserve the current state to be used as a previous state. The voltage regulator may be configured to compare the current state to one or more previous states and adjust the voltage regulator output based on the comparison. Control logic may be configured to enable the voltage reference output in response to a signal. Control logic may be configured to enable the sense amplifier at a time after the voltage reference is stable. Control logic may be configured to disable the voltage reference output in response to the sense amplifier generating an output.
Abstract:
Embodiments that may allow for selectively tuning a delay of individual write paths within a memory are disclosed. The memory may comprise a memory array, a first data latch, a second data latch, and circuitry. The first and second data latches may be configured to each sample a respective data value, responsive to detecting a first edge of a first clock signal. The circuitry may be configured to detect the first edge of the first clock signal, and select an output of the first data latch responsive to detecting the first edge of the first clock signal. The circuitry may detect a subsequent opposite edge of the first clock signal, and select an output of the second data latch responsive to sampling the opposite edge of the first clock signal.
Abstract:
Embodiments of a method that may allow for selectively tuning a delay of individual logic paths within a custom circuit or memory are disclosed. Circuitry may be configured to monitor a voltage level of a power supply coupled to the custom circuit or memory. A delay amount of a delay unit within the custom circuit or memory may be changed in response to a determination that the voltage level of the power supply has changed.
Abstract:
A apparatus including a clock source and a comparison circuit is presented. The clock source may be configured to generate a clock signal. The comparison circuit may be configured select a first frequency of the clock signal and to receive a plurality of voltage signal inputs for comparison. The comparison circuit may be further configured to compare a voltage level of a first voltage signal input of the plurality of voltage signal inputs to a voltage level of a second voltage signal input of the plurality of voltage signal inputs responsive to an active edge of the clock signal. The comparison circuit may also be configured to determine a comparison value corresponding to the comparison of the voltage levels and to select a second frequency of the clock signal dependent upon the comparison value, in which the second frequency is different than the first frequency.
Abstract:
Embodiments of an apparatus are disclosed that may allow for the translation of signals from one power domain to another with well-balanced rise and fall times over a wide operational range. The apparatus may include an input buffer, a voltage shift circuit, and output circuit, and an output driver. The input buffer may be configured to generate a buffered version and delayed inverted version of an external signal at a first voltage level. The voltage shift circuit may be configured to generate two internal signals at a second voltage level dependent upon the output signals of the input buffer. The output circuit may be configured to generate two output driver signals at the second voltage level dependent upon the output signals of the voltage shift circuit. The output driver circuit may be configured to generate an output signal at the second voltage level dependent on the two output driver signals.